Exact Values of Trigonometric Ratios Given a Point on a Terminal Arm

In the previous lesson, we were able to determine the exact values of the trigonometric ratios given a point on the terminal arm of a rotation angle in quadrant one. In this lesson, we extend the method into quadrants two to four.

The point P(-3, 2) lies on the terminal arm of an angle θ in standard position. Complete the following procedure to determine the values of the primary trigonometric ratios.

a) Sketch the rotation angle on the grid and mark the point P(-3, 2) on the terminal arm.

c) Use x = -3, y = 2 and r from above to write the three trigonometric ratios for angle θ .

The point (-4, -2) lies on the terminal arm of an angle θ in standard position.

Determine the exact value of
$$\sin \theta$$
.

$$y = -2$$

$$\int_{-2}^{2} = x^{2} + y^{2}$$

$$\int_{-2}^{2} = \sqrt{(-4)^{2} + (-2)^{2}}$$

$$\int_{-2}^{2} = \sqrt{20} = 2\sqrt{5}$$

Complete Assignment Questions #1 - #3

Value of a Trigonometric Ratio Given a Different Trigonometric Ratio

Angle A terminates in the third quadrant with $\sin A = -\frac{4}{5}$. Complete the following procedure to determine the values of $\cos A$ and $\tan A$.

- a) Since $\sin A = -\frac{4}{5} = \frac{y}{r}$, we know that the point (x, -4) lies on the terminal arm in the third quadrant with r = 5. Sketch a diagram, draw the reference triangle and mark x, y = -4, and r = 5 on the reference triangle.
- **b**) Use $x^2 + y^2 = r^2$ to determine the value of x. (Note that in quadrant three, the value of x must be negative).
- c) Use the values of x, y, and r to determine the exact values of $\cos A$ and $\tan A$.

If $\tan \theta = -\frac{2}{3}$ and $\cos \theta$ is positive, then find the exact value of $\sin \theta$.

1 = 513

Complete Assignment Questions #4 - #11

#1-11

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.