
The Unit Circle

The unit circle can be formed by reflecting the above diagram in the x-axis, in the y-axis, and in both the x-axis and the y-axis.

The circle above, with a radius of one unit, is called the **unit circle** and it is important to understand how it works.

Recall the formulas $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{y}{x}$, and $\cot \theta = \frac{x}{y}$.

• In the unit circle, where r = 1, we have

$$\sin \theta =$$
 and $\cos \theta =$

• Every point on the unit circle has coordinates (x, y) which can be written as $(\cos \theta, \sin \theta)$.

•
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Use the unit circle to find the exact value of the trigonometric ratios for a rotation angle of 240°. Give each answer with a rational denominator.

$$\sin 240^{\circ} =$$

$$\cos 240^{\circ} =$$

$$\tan 240^{\circ} =$$

Use the unit circle to find the exact value of

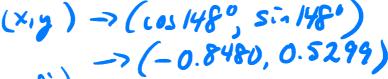
a) cos 135°

b) tan 120°

c) sin 180°

nLL = 45

ref L=0 ref L=90 (0,-1)


Class Ex. #3

are two points on the unit circle. If an object rotates

counterclockwise from point A to point B, through what angle has it rotated?

Use a calculator to determine, to four decimal places, the coordinates of the point on the unit circle that corresponds to a rotation of 148°.

The point T(-0.8829, 0.4695) lies on the unit circle. Determine the value of θ , where θ is the angle made by the positive x-axis and the line passing though T.

We now have two methods for determining exact values of trigonometric ratios of certain angles greater than 90°. Use either method.

Use the chart or unit circle to find the exact value of

a)
$$\cos 300^{\circ} + \sin 330^{\circ}$$

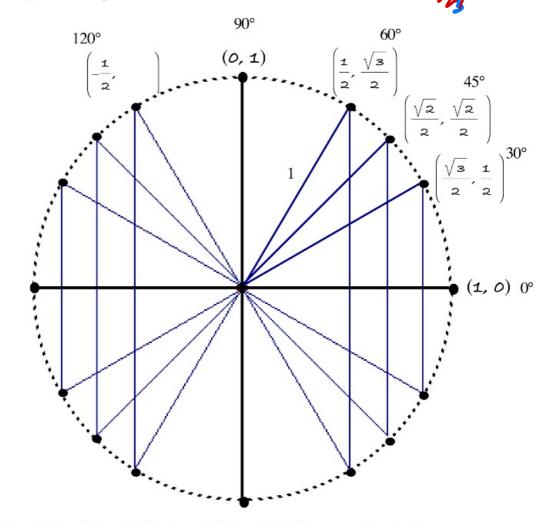
b)
$$\sin^2 225^\circ + \cos^2 225^\circ$$

c)
$$\frac{2 \tan 150^{\circ}}{1 - \tan^2 150^{\circ}}$$

$$\frac{1}{10} \frac{1}{10} = \frac{1}{2} + \left(-\frac{1}{2}\right)$$

$$\begin{array}{ll}
 \text{ref.} & = 45^{\circ} \\
 & = \left(-\frac{12}{2}\right)^{2} + \left(-\frac{12}{2}\right)^{2} \\
 & = \frac{1}{2} + \frac{1}{2}
\end{array}$$

$$\frac{\text{ref } L = 30^{\circ} (-)}{1 - (-\frac{13}{3})}$$


$$= 2(-\frac{13}{3})$$

$$\frac{1 - (-\frac{13}{3})}{1 - (-\frac{13}{3})}$$

Complete Assignment Questions #2 - #13

Assignment

1. The diagram on page 201 has been reflected in the x-axis, the y-axis, and in both axes to produce the diagram below. Complete the diagram by writing the coordinates and the rotation angle for each point on the circumference of the circle.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.