Quadratic Functions and Equations Lesson #5: Converting from General Form to Standard Form by Completing the Square

Review

- The **general form** of a quadratic function has the equation $y = ax^2 + bx + c$.
- The **standard form** of a quadratic function has the equation $y = a(x p)^2 + q$.
- Writing a function in standard form enables us to analyze the function more easily e.g. we can determine the vertex, axis of symmetry and maximum / minimum value of the function.

Completing the Square

 $(x+4)^2$ and $(x-5)^2$ are examples of **perfect squares.**

a) Expand the following perfect squares.

$$(x+4)^2 = (x+4)(x+4) = (x+4)^2 = (x+7)^2 = (x+7)(x+7) =$$

$$(x-5)^2 = (x-5)(x-5) =$$
 $(x-1)^2 = (x-1)(x-1) =$

$$(x+a)^2 =$$
_____ $(x-a)^2 =$ _____

b) Factor the following expressions into perfect squares.

$$x^2 + 6x + 9 =$$

$$x^2 + 12x + 36 =$$

$$x^2 - 4x + 4 =$$

$$x^2 - 16x + 64 =$$

c) Add an appropriate constant so that the following expressions can be written as perfect squares.

$$x^2 + 2x + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x^2 + 18x + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x^2 - 3x + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x^2 - \frac{1}{4}x + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

The process of adding a constant term to a quadratic expression to make it a perfect square is called **completing the square**.

To complete the square of $x^2 + bx$, add $\left(\frac{1}{2} \text{ coefficient of } x\right)^2$

i.e. add
$$\left(\frac{1}{2}b\right)^2$$
 to give $\left(x+\frac{1}{2}b\right)^2$.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Writing $f(x) = x^2 + bx + c$ in Standard Form by Completing the Square

1.) isolate the Constant

Use the following process to convert a function of the form $f(x) = x^2 + bx + c$ into standard form.

Step 2

off the 1st 2 ter 3.) complete the square (1/2 b -> squariz)

Take half of the numerical coefficient of the *x*-term and square it.

4 Step 1

Add <u>and</u> subtract the squared number in step 1. (This keeps the value of the function the same.)

Form a perfect square, write it in factored form, and simplify.

Step 3

1.) Class Ex #1

#1 **2**

Express $y = x^2 + 10x + 16$ in completed square form.

Use a graphing calculator to verify that both equations are represented by identical graphs.

$$y = x^{2} + 10x + 16$$

 $y = (x^{2} + 10x + 15) + 16 - 25$

 $y = (x+5)^2 - 9$

A function, f, is defined by $f(x) = x^2 - 9x - 20$.

Determine the minimum value of f by writing the function in standard form.

$$y = x^{2} - 9x - 20$$

$$y = (x^{2} - 9x + 81) - 20 - 89$$

$$+ 81/4$$

$$\frac{1}{2}(-9) = \begin{bmatrix} -9 \\ 2 \end{bmatrix} = \begin{bmatrix} 81 \\ 4 \end{bmatrix}$$

 $y = (x - \frac{5}{2})^2 - \frac{161}{4}$

Complete Assignment Questions #1 - #4