

Form a quadratic equation and solve. $\frac{2}{a^2} + \frac{3}{a} = -1$, $a \ne 0$

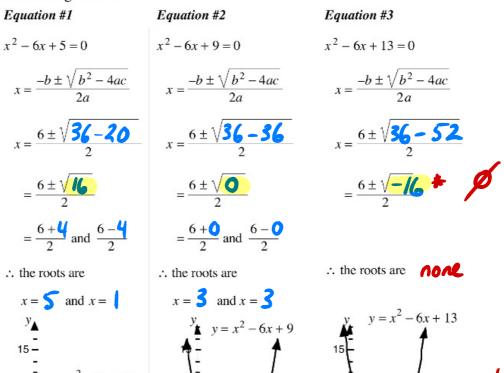
$$\frac{2}{a^2} + \frac{3}{a} = -1, \ a \neq 0$$

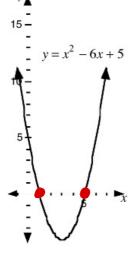
Complete Assignment Questions #1 - #3

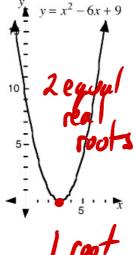
Extension Enrichment

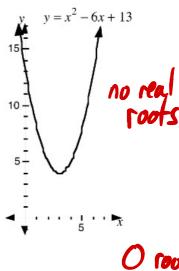
Investigating the Nature of the Roots of a Quadratic Equation

Insert the missing values.









Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

The Nature of the Roots of a Quadratic Equation

The roots of a quadratic equation are represented by the *x*-intercepts of the graph of the corresponding quadratic function.

The roots of a quadratic equation can be equal or unequal and real or non-real.

Consider the graphs from the previous page.

- In graph 1 the roots of the equation $x^2 6x + 5 = 0$ are real and unequal (distinct).
- In graph 2 the roots of the equation $x^2 6x + 9 = 0$ are real and equal.
- In graph 3 the roots of the equation $x^2 6x + 13 = 0$ are non-real.

The Discriminant

The nature of the roots of a quadratic equation can be determined without actually solving the equation or drawing its graph.

The number $b^2 - 4ac$, which appears under the radical symbol in the quadratic formula can be used to discriminate between the different types of roots, and is called the **discriminant**.

discriminant =
$$b^2 - 4ac$$
 — gives us the nature of the rests.

a) Complete the table using the calculations from the investigation on the previous page.

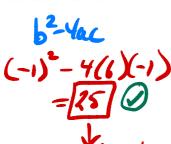
Equation	Roots	Nature of Roots	b^2-4ac	
$x^2 - 6x + 5 = 0$	1,5	2 diff. real nots	16	(+)
$x^2 - 6x + 9 = 0$	3, 3	I real root	0	
$x^2 - 6x + 13 = 0$		no real roots	-16	(-) <u>s</u>

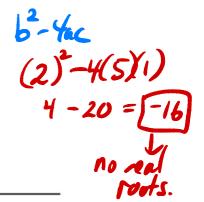
- b) Complete the following:
 - If the discriminant $b^2 4ac = 0$, then the roots are _____ and _____.
 - If the discriminant $b^2 4ac > 0$, then the roots are _____ and _____.
 - If the discriminant $b^2 4ac < 0$, then the roots are _____.

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Determine the nature of the roots of the following equations without solving or graphing.

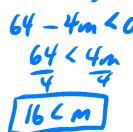
- **b**) $x^2 + 16 = 8$ **c**) $5x^2 + 2x + 1 = 0$.





Determine for what value(s) of m the quadratic equation $x^2 - 8x + m$ has

- a) real and distinct roots
- **b**) real and equal roots
- c) non-real roots
- $(-8)^2 4(1)(m) > 0$ $(-8)^2 4(1)(n) = 0$ $(-8)^2 4(1)(n) < 0$ 64 4n > 0 64 4n = 0 64 4m < 0
- 6-44c =0



- a) State a condition for $b^2 4ac$ so that the equation $ax^2 + bx + c = 0$ has real roots
- **b)** Given that the equation $ax^2 + bx + c = 0$ has real roots, state a condition for $b^2 4ac$ so that the roots are: i) rational, ii) irrational.
- c) Show that the roots of the equation $(m-2)x^2 (3m-2)x + 2m = 0$ are always real and rational.