Quadratic Functions and Equations Lesson #2: Analyzing Quadratic Functions - Part One

Quadratic Function

A quadratic function is a function which can be written in the form

$$f(x) = ax^2 + bx + c$$
, where $a, b, c \in R$, and $a \ne 0$

or in equation form as

$$y = ax^2 + bx + c$$
, where $a, b, c \in R$, and $a \ne 0$

Quadratic Equation

A quadratic equation is an equation which can be written in the form

$$ax^2 + bx + c = 0$$
, where $a, b, c \in R$, and $a \ne 0$.

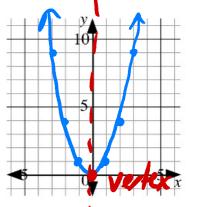
The roots of the quadratic equation $ax^2 + bx + c = 0$ are the zeros of the related quadratic function $f(x) = ax^2 + bx + c$.

General and Standard Forms

A quadratic function can be written in **general** or **standard** form.

General Form:
$$f(x) = ax^2 + bx + c$$
, or $y = ax^2 + bx + c$, where $a, b, c \in R$, and $a \ne 0$.

Standard Form:
$$f(x) = a(x-p)^2 + q$$
, or $y = a(x-p)^2 + q$, where $a, p, q \in R$, and $a \ne 0$.


In this unit we will study both the general form and standard form, beginning with the standard form in this lesson.

Analyzing the Graph of the Function with Equation $y = x^2$

parent function

• Graph the function with equation $y = x^2$ by completing the table of values. Join the points with a smooth curve. The graph of this function is called a <u>parabola</u>.

х	-3	-2	-1	0	1	2	3
у	9	4	1	0	1	4	9

• The <u>axis of symmetry</u> is the "mirror" line which splits the parabola in half. X=0 State the equation of the axis of symmetry for this parabola.

$$X = 0$$

• The <u>vertex</u> of a parabola is where the axis of symmetry intersects the parabola. The vertex can represent a <u>minimum point</u> or <u>maximum point</u> depending on whether the parabola opens up or down.

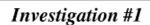
Label the vertex (V) on the graph and state its coordinates.

• The maximum or minimum **value** of a quadratic function occurs at the vertex and is represented by the *y*-coordinate of the vertex. Complete the following:

The **minimum** value of the function with equation $y = x^2$ is <u>0</u>.

• State the domain and range of the function with equation $y = x^2$, $x \in R$.

Domain: X = |R| Range: $y \ge 0$ or x = a/l Ral numbers


The following investigations can be completed as a class lesson or as an individual assignment. The process used in these explorations will be further developed in grade 12 mathematics.

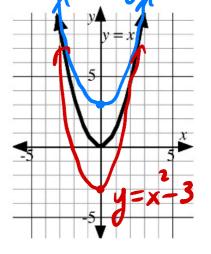
Analyzing the Function with Equation $y = a(x - p)^2 + q$, a = 1

The next three investigations help us explore some general transformations on the graph of $y = x^2$ and the relationship they have to the standard form $y = a(x - p)^2 + q$, where a = 1.

A transformation is an operation which moves (or maps) a figure from an original position to a new position.

In each investigation, use a graphing calculator to sketch the equations.

Analyzing the Graph of $y = x^2 + q$


The graph of $y = f(x) = x^2$ is shown.

a) Write an equation which represents each of the following:

•
$$y = f(x) + 3$$

$$y = f(x) - 3$$

b) Use a graphing calculator to sketch y = f(x) + 3and y = f(x) - 3 on the grid.

c) Complete the following chart.

Function	Equation Representing Function	Vertex	Max/Min Value	Equation of Axis of Symmetry	Description of Transformation	
y = f(x)	y = x ²	(0, 0)	min, o	x = 0	no transformation	
y = f(x) + 3	y=x3+3	(0,3)	min, 3	X=0	Verheal translation 3 units UP	
y = f(x) - 3	y=x-3	(0,-3)	min,-3	X=0	vertical translation	
y = f(x) + q	y= x2+9,	(0,9)	min, g	X=0	vertitons. 9, units up or down	

d) What is the effect of the **parameter**, q, on the graph of $y = x^2 + q$?

causes vertical translations up or down

e) Compared to the graph of $y = x^2$, the graph of $y = x^2 + q$ results in

translation (or shift) of q units.

If q > 0, the parabola moves \underline{QQ} . If q < 0, the parabola moves \underline{QQQ} .

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

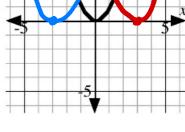
Investigation #2

Analyzing the Graph of $y = (x - p)^2$

The graph of $y = f(x) = x^2$ is shown.

a) Write an equation which represents each of the following:

$$y = f(x+3)$$


$$y = (x+3)$$

$$(x-(-3))^2$$

$$y = f(x-3)$$

$$y = (x-3)$$

- **b**) Use a graphing calculator to sketch y = f(x + 3) and y = f(x 3) on the grid.
- c) Complete the following chart.

	Representing Function	Vertex	Max/Min Value	Equation of Axis of Symmetry	Description of Transformation
y = f(x)	y = x ²	(0, 0)	min, o	x = 0	no transformation
y = f(x+3)	y = (x+3)2	(-3,0)	min,O	X=-3	denie del translation 3 units left
y = f(x - 3)	$y = (x-3)^2$	(3,0)	min,O	x = 3	horizontel toustation
y = f(x - p)	$y = (x-p)^2$	(p, o)	min, O	×=p	hos tras. p unit

d) What is the effect of the **parameter**, p, on the graph of $y = (x - p)^2$?

causes horizontal translations left or right

e) Compared to the graph of $y = x^2$, the graph of $y = (x - p)^2$ results in a horizont translation (shift) of p units.

If p > 0, the parabola moves p < 0, the parabola moves p < 0, the parabola moves p < 0.

Investigation #3

Analyzing the Graph of $y = (x - p)^2 + q$

Consider the function $f(x) = x^2$.

- a) Write an equation which represents f(x+2) 4.
- **b**) Predict the transformations on $y = x^2$ in a). Use a graphing calculator to verify the results.

c) Complete the following chart

	144.00					
Function	Equation Representing Function	Vertex	Max/Min Value	Equation of Axis of Symmetry		scription of sformation
y = f(x)	y = x ²	(0, 0)	min, 0	x = 0	no tra	nsformation
y = f(x+2) - 4	y-(x+2)2-4	(2,-4)	min,-4	x=-2	/	
y = f(x - p) + q	4=(x-p)2+8	(9.9)	min, q	X=ρ	horta	astin Py

Describe how the graphs of the following functions relate to the graph of $y = x^2$

- **a**) $y = (x + 10)^2$
- **b**) $y = x^2 + 4$
- c) y + 8 = (x 5)

(-10,0)

The following transformations are applied to the graph of $y = x^2$. Write the equation of the image function for each.

- a) a horizontal translation of 5 units right
- **b**) a translation of 6 units down and 4 units left

Write the coordinates of the image of the point (3, 9) on the graph $y = x^2$ when a translation of two units up and seven units right is applied.

Complete Assignment Questions #1 - #10

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Vertex:
$$(-2,-3)$$

Vertex: $(-2,-3)$

Maximin in the second of the seco

-2=13 =x (evoit)