Exponents and Radicals Lesson #1: Classifying Real Numbers

Recall from previous courses the definitions of rational numbers and irrational numbers.

- Decimal numbers which repeat or terminate can be converted into fractions and are called rational numbers, since they can be written as the ratio of two integers.
- Decimal numbers which are both non-repeating and non-terminating cannot be converted into fractions and are called irrational numbers.

The set of all rational numbers and the set of all irrational numbers, when combined, form the set of **real numbers**. These numbers can be represented on a number line.

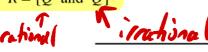
The following sets of numbers are within the real number system:

Natural Numbers

$$N = \{1, 2, 3, ...\}$$

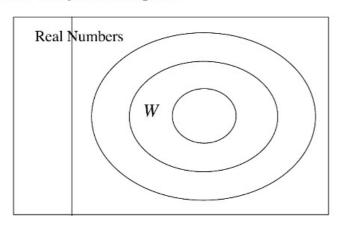
Whole Numbers — include **200** $W = \{0, 1, 2, 3, ...\}$

Integers - Tallude - ins $I = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}$


Rational Numbers

Irrational Numbers

 $Q = \left\{ \frac{a}{b}, \text{ where } a, b \in I, b \neq 0 \right\}$ $\overline{Q} = \{\text{non-terminating and non-repeating decimals} \}$


Real Numbers

 $R = \{Q \text{ and } Q\}$

Raven, a student in the Advanced Placement mathematics program, was asked to show the interrelationship between sets of numbers in a <u>nested</u> diagram. Her partial work is shown below. Complete her diagram.

Note that the area of each region bears no relation to the number of members in each set.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- a) For each of the following, write all the sets of numbers to which the given number belongs. Write the answers from the largest set to the smallest set.
 - i) 9
 real
 retional
 integers
 while
- i) 11/7 R
- i) $\sqrt{5}$ Replace
- -7 **R9 I**
- **b**) Explain why 9 belongs to five number sets, but -9 belongs to only three number sets.

Complete Assignment Questions #1 - #7

Square Roots

All positive numbers have two square roots: one a positive number and the other a negative number. The positive square root is called the **principal square root** and is denoted by the symbol $\sqrt{}$.

- The square roots of a perfect square are rational numbers. e.g. the square roots of 16 are 4 and -4. **NOTE:** $\sqrt{16} = 4$ only.
- The square roots of a non-perfect square are irrational numbers. e.g. the square roots of 17 are $\sqrt{17}$ and $-\sqrt{17}$.

The ability to estimate mentally the square root of a non-perfect square is important when checking a calculator calculation for possible error. A knowledge of some common perfect squares enables us to make such estimates to the nearest whole number.

2² 3² 4²

 $4^2 = 16$ $5^2 = 25$

 $6^2 = 36$

 $7^2 = 49$

 $8^2 = 64$ $9^2 = 81$

 $9^2 = 81$

 $10^2 = 100$

 $12^2 = 144$

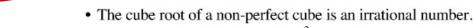
 $13^2 = 169$

 $14^2 = 196$

In each of the following

- i) estimate the value mentally (use whole numbers)
- ii) use a calculator to find the decimal approximation to the nearest tenth, and decide if the estimate in i) is reasonable
 - a) $\sqrt{46} \sim 6.8$

b) $-\sqrt{5}$ ~ -2.2

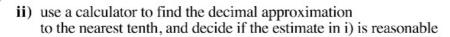

c)
$$2\sqrt{18} + 5\sqrt{37} - \sqrt{5}$$
 d)
 $2(4) + 5(6) - 2$
 $8 + 30 - 2 = 36.5$

Cube Roots

All numbers (positive and negative) have one cube root, denoted by the symbol $\sqrt[3]{}$.

• The cube root of a perfect cube is a rational number.

e.g. the cube root of 1 000 is 10, i.e.
$$\sqrt[3]{1000} = 10$$
.
the cube root of -27 is -3, i.e. $\sqrt[3]{-27} = -3$.



e.g. the cube root of 9 is $\sqrt[3]{9}$, which is irrational.

In each of the following

i) estimate the value mentally (use whole numbers)

a)
$$\sqrt[3]{11} \sim 2.1$$

b)
$$\sqrt[3]{120}$$
 — 4. §

c)
$$4\sqrt{70} - 4\sqrt[3]{70}$$

~ $4(8) - 4(4)$
~ $32 - 16 \sim 16.6$

* perfect cubes.

3

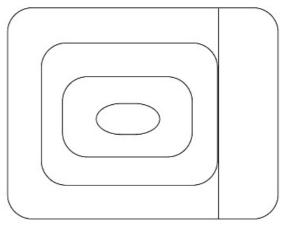
$$3^{3} = 27$$

$$4^{3} = 64$$

$$5^{3} = 125$$

$$6^{3} = 216$$

$$7^{3} = 343$$


$$8^3 = 512$$
 $9^3 = 729$

 $10^3 = 1000$

Assignment

1. Complete the Venn Diagram to show the interrelationship between the sets of numbers in the real number system.

- 2. For each of the following, write all the sets of numbers to which the given number belongs. Write the answers from the largest set to the smallest set.
 - a) -2
- **b**) $\sqrt{36}$
- c) 3.14159265

- **e**) 0
- **g**) -2.1345218... **h**) π

3. Explain why -7 belongs to more number sets than $-\frac{7}{2}$.