Exponents and Radicals Lesson #7: Rational Exponents - Part Two

Review

Complete the following as a review.

Product Law

$$x^m x^n = X^{n+n}$$

Ouotient Law $x^m \div x^n =$

$$x^m \div x^n =$$

Power of a Power

$$(x^m)^n = X^m$$

Power of a Product
$$(xy)^m = X$$

Power of a Quotient

$$\left(\frac{x}{y}\right)^m = \frac{x}{y}, y \neq 0$$

Integral Exponent Rule x

$$x = \frac{m}{x^n} = \frac{1}{x}$$
, where $x = \frac{m}{x}$ or (

Rational Exponents

$$x^{\frac{m}{n}} =$$
 or $x^{\frac{m}{n}}$

Writing Powers as Radicals

b)
$$-y^{\frac{5}{4}}$$

c)
$$(-7)^{\frac{5}{3}}$$

c)
$$(-z)^{\frac{5}{3}}$$
 d) $(-z)^{-\frac{5}{3}}$ e) $5t^{\frac{3}{4}}$ f) $(5t)^{\frac{3}{4}}$

e)
$$5t^{\frac{3}{4}}$$

f)
$$(5t)^{\frac{3}{4}}$$

Simplify the following. Write each expression as a power with positive exponents and then as an entire radical.

a)
$$x^{\frac{3}{2}} \times x$$

$$= x^{\frac{5}{2}}$$
$$= (\sqrt{x})^{\frac{3}{2}}$$

b)
$$y^{\frac{1}{3}} \div y^{\frac{1}{3}}$$

c)
$$(a^{\frac{1}{2}})^{\frac{2}{3}}$$

Simplify the following. Write each expression as a power with positive exponents and then

$$4x^{\frac{3}{4}} \times 3x^{-\frac{1}{2}}$$

b)
$$\frac{5x^{\frac{3}{5}}}{25x^{-\frac{3}{5}}}$$

$$= 12 \times 9$$

Complete Assignment Questions #1 - #3

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Writing Radicals as Powers

We can use the rule $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$ to write radicals as powers.

b) $\frac{1}{\sqrt{169}}$

Write each radical as a power in the form a^n , $n \in Q$.

- **a)** $\sqrt[3]{a^5}$
- **b**) $\sqrt[5]{a^2}$
- c) $\sqrt{a^9}$
- $\mathbf{d)} \quad \frac{1}{\sqrt{a^7}}$

c) $\sqrt[3]{\sqrt{64}}$

c) $\sqrt{900x}$

Write as a power and evaluate.

- **a)** $\sqrt{\sqrt{1296}}$
- = (1296)
- = 12964

Write each expression in the form ax^n , where $a \in I$, and $n \in Q$.

b) $\sqrt[5]{32x^3}$

- $\mathbf{d}) \left(\sqrt[3]{x^5} \right) \left(\sqrt[3]{x} \right)$

e) $2\sqrt{x} \times \sqrt[3]{x}$

Write an equivalent expression using exponents.

c)
$$\left(\sqrt[4]{x^5y^3}\right)^{\frac{3}{2}}$$

Complete Assignment Questions #4 - #15

Assignment

1. Write each power as an entire radical.

a)
$$a^{\frac{4}{5}}$$

b)
$$b^{\frac{3}{2}}$$

c)
$$c^{\frac{1}{4}}$$

a)
$$a^{\frac{4}{5}}$$
 b) $b^{\frac{3}{2}}$ **c)** $c^{\frac{1}{4}}$ **d)** $x^{-\frac{2}{5}}$ **e)** $y^{-\frac{1}{3}}$

e)
$$y^{-\frac{1}{3}}$$

f)
$$5h^{\frac{2}{3}}$$

f)
$$5h^{\frac{2}{3}}$$
 g) $(5h)^{\frac{2}{3}}$ **h**) $-r^{\frac{5}{4}}$ **i**) $(-r)^{\frac{5}{4}}$ **j**) $2x^{-\frac{1}{2}}$

h)
$$-r^{\frac{5}{4}}$$

i)
$$(-r)^{\frac{5}{4}}$$

i)
$$2x^{-\frac{1}{2}}$$

2. Simplify the following. Write each expression as a power with positive exponents and then as an entire radical.

a)
$$x^{\frac{7}{2}} \times x$$

a)
$$x^{\frac{7}{2}} \times x$$
 b) $y^{\frac{6}{5}} \div y^{\frac{4}{5}}$ **c)** $(a^{\frac{2}{5}})^{\frac{3}{4}}$ **d)** $(e^3 f)^{\frac{3}{2}}$

c)
$$(a^{\frac{2}{5}})^{\frac{3}{4}}$$

d)
$$(e^3f)^{\frac{3}{2}}$$

e)
$$x^{\frac{1}{2}} \times x^{-1}$$

f)
$$y^{\frac{2}{7}} \div y^{\frac{5}{7}}$$

$$\mathbf{g}) \left(\frac{x}{y^4}\right)^{\frac{1}{2}}$$

e)
$$x^{\frac{1}{2}} \times x^{-1}$$
 f) $y^{\frac{2}{7}} \div y^{\frac{5}{7}}$ **g**) $\left(\frac{x}{y^4}\right)^{\frac{1}{2}}$ **h**) $\left(\frac{x^2}{y}\right)^{-\frac{3}{2}}$