Operations on Radicals Lesson #2: Multiplying Radicals

Investigation

Investigating Multiplication Properties of Radicals

Use a calculator to determine whether the following statements are true or false.

a)
$$\sqrt{2} \times \sqrt{3} = \sqrt{6}$$
 (2 $\sqrt{5}$)(-4 $\sqrt{3}$)=-8 $\sqrt{15}$ c) $\sqrt{2} \cdot \sqrt[3]{4} = \sqrt[3]{8}$

d)
$$2\sqrt[3]{10} \times 3\sqrt[3]{7} = 6\sqrt[3]{70}$$
 e) $(4\sqrt[3]{5})(7\sqrt{6}) = 28\sqrt[6]{30}$

Based on the results from a) - e), write a rule which describes the process of multiplying radicals.

Multiplying Radicals

To multiply radicals, the index must be the same in each radical.

- · Multiply numerical coefficients by numerical coefficients.
- Multiply radicand by radicand.
- Simplify into mixed radical form if possible.

It is usually easier to convert each radical to its simplest mixed form before multiplying.

Multiply and simplify where possible.

a)
$$\sqrt{8} \cdot \sqrt{8}$$
 b) $(4\sqrt{5})(3\sqrt{6})$

$$\sqrt{8} \cdot \sqrt{8}$$
 b) $(4\sqrt{5})(3\sqrt{6})$ **c**) $(4\sqrt{x})(3\sqrt{y})$

$$\sqrt{64}$$
 = $\sqrt{12}\sqrt{30}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreen

Expand and simplify.

a)
$$\sqrt{5}(2\sqrt{10}-\sqrt{5})$$

b)
$$2\sqrt{5} \left(3\sqrt{45} - 8\sqrt{5} + 3\sqrt{20}\right)$$

$$2\sqrt{50} - 5$$

$$2\sqrt{15}\sqrt{2}$$

$$= \sqrt{10}\sqrt{2} - 5$$

$$2(\sqrt{3} - \sqrt{5}) - \sqrt{2}(\sqrt{6} + 1)$$

c)
$$2(\sqrt{3} - \sqrt{5}) - \sqrt{2}(\sqrt{6} + \sqrt{10})$$

= $2\sqrt{3} - 2\sqrt{5} - \sqrt{12} - \sqrt{20}$

$$\begin{array}{c}
-4\sqrt{a}\left(\sqrt{a}-9\sqrt{b}\right) \\
-4\alpha+36\sqrt{ab}
\end{array}$$

Write and simplify an expression for the area of each shape.

a)
$$4 + \sqrt{6}$$
 $7 - \sqrt{6} + \frac{4 + \sqrt{6}}{4 + \sqrt{6}}$

Complete Assignment Questions #1 - #10

Multiplying Conjugate Binomials

Expand the following expressions:

i)
$$(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})$$
 ii) $(2\sqrt{7} + 8)(2\sqrt{7} - 8)$

ii)
$$(2\sqrt{7} + 8)(2\sqrt{7} - 8)$$

The pairs of binomials above are called **conjugates** of each other. What do you notice about the product of two conjugate binomials?

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- Conjugate binomials are pairs of binomials in the form $a\sqrt{b} + c\sqrt{d}$ and $a\sqrt{b} c\sqrt{d}$.
- The product of conjugate binomials is always a rational number of the form $a^2b c^2d$.

Class Ex. #4

Write the conjugate of each, then multiply each pair.

b)
$$3\sqrt{11} + \sqrt{2}$$

c)
$$5\sqrt{x} - \sqrt{y}$$

$$96 + 1256 - 1256 - 9 = 99 - 2$$

Complete Assignment Questions #11 - #17

1. Multiply and simplify w

a)
$$(\sqrt{7})(\sqrt{3})$$
 b) $4\sqrt{3} \times 2\sqrt{5}$ c) $-3\sqrt{5} \times 2\sqrt{2}$ d) $6\sqrt{p} \times 8\sqrt{q}$

b)
$$4\sqrt{3} \times 2\sqrt{5}$$

c)
$$-3\sqrt{5} \times 2\sqrt{2}$$

d)
$$6\sqrt{p} \times 8\sqrt{q}$$

5 Jx - Jy (5 Jx+

e)
$$(\sqrt{15})(\sqrt{3})$$
 f) $10\sqrt{5} \times 9\sqrt{5}$ g) $3\sqrt{6} \cdot 5\sqrt{10}$ h) $\sqrt{a} \times 10\sqrt{a}$

$$\mathbf{f)} \ 10\sqrt{5} \times 9\sqrt{5}$$

g)
$$3\sqrt{6} \cdot 5\sqrt{10}$$

h)
$$\sqrt{a} \times 10\sqrt{a}$$

i)
$$7\sqrt{54} \cdot 2\sqrt{6}$$

i)
$$7\sqrt{54} \cdot 2\sqrt{6}$$
 j) $(\sqrt{32})(\sqrt{6})$ k) $\sqrt{15} \times 3\sqrt{27}$

k)
$$\sqrt{15} \times 3\sqrt{27}$$