

Express 15° as a difference of two special angles and hence determine the exact value of $\sin 15^{\circ}$ with a rational denominator.

$$
\begin{aligned}
=\sin \left(45^{\circ}-30^{\circ}\right) & =\sin 45 \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ} \\
& =\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)>\frac{\sqrt{6}-\sqrt{2}}{4} \\
5 \pi & =\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{3}-1}{5 \pi}
\end{aligned}
$$

$\frac{\pi}{2}=\frac{6 \pi}{12}$
Express $\frac{5 \pi}{12}$ as a sum of two specie
$\frac{\pi}{4}=\frac{3 \pi}{2} \quad \frac{5 \pi}{12}=\frac{\pi}{4}+\frac{\pi}{6}$

$$
\frac{\pi}{3}=\frac{4 \pi}{12}
$$

Simplify the following.
a) $\sin 100^{\circ} \cos 10^{\circ}-\cos 100^{\circ} \sin 10^{\circ}=\sin (A-\rho)^{\frac{3}{3-\sqrt{3}}}$ $\sin \left(100^{\circ}-10^{\circ}\right)=\sin 90^{\circ}=1$
$(1) \frac{-6 \sqrt{8+8}}{6}$
b) $\cos \left(\frac{1}{4} \pi-\theta\right) \cos \left(\frac{1}{4} \pi+\theta\right)-\sin \left(\frac{1}{4} \pi-\theta\right) \sin \left(\frac{1}{4} \pi+\theta\right)=\cos (A+\theta)=3 \pi 66$

$$
\left.\cos ^{2}(4 \pi-\theta)+(4 \pi+\theta)\right)=\cos ^{\frac{\pi}{2}}=0
$$

Given $\cos A=\frac{3}{5}$ and $\cos B=\frac{5}{13}$, where $0 \leq \frac{T}{A} \leq \frac{\pi}{2}$ and $\frac{3 \pi}{2} \leq B \leq 2 \pi$, find the exact value of $\cos (A+B)$.

LA

$$
=\cos A \cos B-\sin A \sin B
$$

$$
\begin{aligned}
& x=3=\left(\frac{3}{5}\right)\left(\frac{5}{13}\right)-\left(\frac{4}{5}\right)\left(-\frac{12}{13}\right) \\
& y=4=\frac{15}{65}+\frac{48}{65} \\
& r=5=\frac{63}{65} \\
& 5^{2}=3^{2}+y^{2} \\
& 16=y^{2} \\
&+4=y \text { Complete Assignment Questions } \$ 1-* 12
\end{aligned}
$$

$$
\begin{gathered}
\sin A=\frac{4}{5} \\
\sin B=-\frac{12}{13} \\
\angle B x=5 \\
y=-12 \\
r=13 \\
13^{2}=s^{2}+y^{2} \\
\sqrt[344]{ }=y^{2}
\end{gathered}
$$

Copyright © by Absolute Value= rquilcalions. This book is NOT covered by the Capcopyagreement.

