The identity for $\cos 2 A$ can be expressed in two other forms using the Pythagorean identity $\sin ^{2} A+\cos ^{2} A=1$. The proof of the other two forms of the identity is asked for in assignment question \#1.

Double Angle Identities

$$
\begin{array}{ll}
\sin 2 A=2 \sin A \cos A & \cos 2 A=\cos ^{2} A-\sin ^{2} A \quad \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} \\
& \cos 2 A=2 \cos ^{2} A-1 \\
& \cos 2 A=1-2 \sin ^{2} A
\end{array}
$$

Prove that the identity $\frac{2 \tan x}{1+\tan ^{2} x}=\sin 2 x$ is valid and state the non-permissible values.

b) Write double angle identities for
i) $\cos 10 A$

ii) $\tan x$

Express each of the following in terms of a single trigonometric function.
a) $2 \sin 4 x \cos 4 x$
b) $\cos ^{2} \frac{1}{2} A-\sin ^{2} \frac{1}{2} A$
c) $\sin \frac{5}{2} x \cos \frac{5}{2} x$
\qquad $2 A=2 \sin A \cos A$ $\cos 2 A=\cos ^{2} A-\sin ^{2} x$
$\sin 242 \sin A \cos A$

$$
A=4 x
$$

Copyright © by Absolute vaicumications. This book is NOT covered by the Cancopy agreement.

Trigonometry - Equations and Identities Lesson \#8: Using Identities to Solve Equations

We have already learned how to solve simple trigonometric equations.
More complex trigonometric equations may require making substitutions using the trigonometric identities we have learned in this unit. This will usually involve expressing the equation in terms of one of the three primary trigonometric functions.

Using Identities to Solve Equations

Solve the following equations where $0 \leq x \leq 2 \pi$.
a) $2 \cos ^{2} x+3 \sin x=0$
b) $\cos \left(x+\frac{\pi}{6}\right)-\cos \left(x-\frac{\pi}{6}\right)=1$
$2\left(1-\sin ^{2} x\right)+3 \sin x=0$

$2-2 \sin ^{2} x+3 \sin x=0$

$$
0=2 \sin ^{2} x-3 \sin x-2
$$

$$
\frac{\sqrt{3}}{2} \cos x-\frac{1}{2} \sin x-\frac{\sqrt{3}}{2} \cos x-\frac{1}{2} \sin x=1
$$

$$
0=(2 \sin x+1)(\sin x-2)
$$

$$
-\sin x=1
$$

$$
\sin x=-i
$$

Consider the equation 4-7 $\sin x=\cos 2 x$.
a) Which of the three identities for $\cos 2 x$ would be the most efficient replacement for solving this equation?

$$
\cos 2 x=1-2 \sin ^{2} x
$$

b) Determine the general solution to the equation $4-7 \sin x=\cos 2 x$.

Copyright © by Absolute Value Publivations. This book IS INUT covered by the Cancopy agreement.

$$
\# 1,2,5,7,8
$$

