Polynomial Functions and Equations Lesson #1: Polynomial Functions

Overview

In this unit, we will use long division and synthetic division to divide polynomial expressions by binomial expressions, and use these processes as a means to factor polynomial expressions, and to determine the zeros of polynomial functions. We will also establish relationships between the equations of polynomial functions and their graphs.

Polynomial Function

A polynomial function is a function in the form

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0,$

where: $a_0, a_1, a_2, \dots a_n$ are real numbers, $a_n \neq 0$, and $n \in W$.

- The values, $a_1, a_2, \dots a_n$ are called **coefficients**.
- The coefficient of the highest power of x, which is a_n , is called the **leading coefficient**.
- The term independent of x, which is a_0 , is the constant term.
- The value of *n* is the **degree** of the polynomial.

Recognizing a Polynomial Function

Expressions containing roots of variables, negative or fractional powers of a variable, or any coefficient which is non-real are **NOT** polynomial functions.

State whether or not the following are polynomial functions. If they are not polynomial functions, explain why not.

a)
$$f(x) = -5x^3 + x^{\frac{1}{2}} - 4$$

b) expond power of $\frac{1}{2}$ or x

c) $f(x) = x^4 + 9029x^3 - \sqrt{17}x^2 + 3897$

e)
$$f(x) = 5x^3 - \sqrt{3x^2} + 2x - 4$$

= 5x³ - 5x + 2x - 4

b)
$$f(x) = 2x^2 - 7x^{-1} - 3$$

no, negative expect on 7x
d) $f(x) = \sqrt{5x^3 - 3x^2 + 2x - 4}$
no, (5x)

f)
$$f(x) = \sqrt{3} x^3 - \sqrt{-3} x$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Degree, Leading Coefficient, and Constant Term

Sometimes a polynomial function can be in a "disguised" form.

Classifying Polynomial Functions

Polynomial functions can be classified in several ways.

By Number of Terms

In previous courses we have used the classification **monomial** (one term), **binomial** (two terms), and **trinomial** (three terms). Polynomials with four or more terms are not usually given a classification other than polynomial.

By Degree

Polynomial functions can also be classified according to degree, such as: **constant** (degree zero), **linear** (degree one), **quadratic** (degree two), **cubic** (degree three), **quartic** (degree four), etc. **Quintic** (degree 5)

a) Complete the chart.

Polynomial Function	Degree	Туре
P(x) = c	0	constant
$P(x) = ax + b, \qquad a \neq 0$	-	liner
$P(x) = ax^2 + bx + c, \qquad a \neq 0$	2	guadatic
$P(x) = ax^3 + bx^2 + cx + d, a \neq 0$	3	cubic
$P(x) = ax^4 + bx^3 + cx^2 + dx + e, a \neq 0$	4	quartic

b) Research the names for polynomials of degrees five through ten.

intic

By Type of Coefficients

Polynomial functions can also be classified according to their coefficients. For example,

• $3x^4 - 5x^2 + x + 7$ is an integral polynomial function all coefficients are • $3x^4 - \frac{2}{5}x^2 + x + 7$ is a rational polynomial function at less the rational coefficients are • $\sqrt{3}x^4 - \frac{2}{5}x^2 + x + 7$ is a real polynomial function all coefficients are

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

In each case, write a polynomial P(x) satisfying the following conditions.

- a) trinomial, quartic, and integral
- **b**) binomial, linear, and real
- c) monomial, quadratic, and rational

Evaluating Unknowns in a Polynomial Function

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.