Polynomial Functions and Equations Lesson \# 1 : Polynomial Functions

Overview

In this unit, we will use long division and synthetic division to divide polynomial expressions by binomial expressions, and use these processes as a means to factor polynomial expressions, and to determine the zeros of polynomial functions. We will also establish relationships between the equations of polynomial functions and their graphs.

Polynomial Function

A polynomial function is a function in the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0},
$$

where: $a_{0}, a_{1}, a_{2}, \ldots a_{n}$ are real numbers, $a_{n} \neq 0$, and $n \in W$.

- The values, $a_{1}, a_{2}, \ldots a_{n}$ are called coefficients.
- The coefficient of the highest power of x, which is a_{n}, is called the leading coefficient.
- The term independent of x, which is a_{0}, is the constant term.
- The value of n is the degree of the polynomial.

Consider the polynomial $f(x)=x^{4}+7 x^{3}-8 x^{2}+5$. State:
a) the degree of the polynomial
b) the leading coefficient

Recognizing a Polynomial Function

Expressions containing roots of variables, negative or fractional powers of a variable, or any coefficient which is non-real are NOT polynomial functions.

State whether or not the following are polynomial functions. If they are not polynomial functions, explain why not.
a) $f(x)=-5 x^{3}+x^{\frac{1}{2}}-4$
b) $f(x)=2 x^{2}-7 x^{-1}-3$
c) $f(x)=x^{4}+9029 x^{3}-\sqrt{17} x^{2}+3897$
e) $f(x)=5 x^{3}-\sqrt{3 x^{2}}+2 x-4$
$=5 x^{3}-\sqrt{3} x+2 x-4$
no, negative export on $7 x$
d) $f(x)=5 x^{3}-3 x^{2}+2 x-4$

100
$2(5 x)^{3 / 2}$
f) $f(x)=\sqrt{3} x^{3}-\sqrt{-3} x$
no, $\sqrt{-3}$ is not real \#

Degree, Leading Coefficient, and Constant Term

Sometimes a polynomial function can be in a "disguised" form.

State the degree, the leading coefficient, and the constant term of each polynomial function.

$$
f(x)=-25 x^{3}+34 x^{2}+2 x-39
$$

a) $f(x)=34 x^{2}-25 x^{3}+2 x-39$
b) $f(x)=(5 x-1)(2 x+7)$
degree $\rightarrow 3$
degree $\rightarrow 2$
leading coefficient $\rightarrow-25$
leading coefficient $\rightarrow 10$
constant $\rightarrow-39$

$$
\text { constant } \rightarrow-7
$$

In the following polynomial functions,
i) determine the degree, the leading coefficient, and the constant term without expanding
ii) verify the results in i) by expanding and simplifying the polynomial.
a) $P(x)=2(3 x-1)^{2}\left(5 x^{2}-x+1\right)$
degree $\rightarrow x^{2} \cdot x^{2} \rightarrow 4$
leading coefficient $\rightarrow 2(3)^{2}(5)=90$ constant $\rightarrow 2(-1)^{2}(1)=2$
b) $P(x)=2(3 x-1)^{2}+\left(5 x^{2}-x+1\right)$
$\stackrel{\text { degree } \rightarrow}{ } 2$
leading coefficient $\rightarrow 2(3)^{2}+5=23$
constant $\rightarrow 2(-1)^{2}+1=3$

Consider the polynomial function $P(x)=7$.
a) Explain why the polynomial function $P(x)=7$ has a degree of zero.

$$
P(x)=7 x^{\circ} \quad x^{\circ}=1 \text { not necessary }
$$

b) Explain why this type of function is called a constant function.

Classifying Polynomial Functions

Polynomial functions can be classified in several ways.

By Number of Terms

In previous courses we have used the classification monomial (one term), binomial (two terms), and trinomial (three terms). Polynomials with four or more terms are not usually given a classification other than polynomial.

By Degree

Polynomial functions can also be classified according to degree, such as: constant (degree zero), linear (degree one), quadratic (degree two), cubic (degree three), quartic (degree four), etc.

a) Complete the chart.

Polynomial Function	Degree	Type
$P(x)=c$	0	consult
$P(x)=a x+b, \quad a \neq 0$	1	linear
$P(x)=a x^{2}+b x+c, \quad a \neq 0$	2	quadratic
$P(x)=a x^{3}+b x^{2}+c x+d, \quad a \neq 0$	3	cubic
$P(x)=a x^{4}+b x^{3}+c x^{2}+d x+e, \quad a \neq 0$	4	quafic

b) Research the names for polynomials of degrees five through ten.

By Type of Coefficients

Polynomial functions can also be classified according to their coefficients. For example,

- $3 x^{4}-5 x^{2}+x+7$ is an integral polynomial function

- $3 x^{4}-\frac{2}{5} x^{2}+x+7$ is a rational polynomial function

- $\sqrt{3} x^{4}-\frac{2}{5} x^{2}+x+7$ is a real polynomial function

In each case, write a polynomial $P(x)$ satisfying the following conditions.
a) trinomial, quartic, and integral
b) binomial, linear, and real
c) monomial, quadratic, and rational

Evaluating Unknowns in a Polynomial Function

If $P(x)=-3 x^{2}+a x+8$ and $P(1)=-9$, then find the value of a.

1) $k+x=1+y=-9$
(1) +8

Determine the values of a and b in $P(x)=-2 x^{2}+a x+b$ if $P(2)=-18$ and $P(-3)=-13$.

$$
-18=-2(2)^{2}+a(2)+b
$$

(1)

$$
-18=-8+2 a+b
$$

$-13=-2(-3)^{2}+a(-3)+b$
$-13=-18-3 a+b$

elimination
substitute $5=9+6$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

