Polynomial Functions and Equations Lesson \#3: Using Synthetic Division to Divide a Polynomial by a Binomial

Review

The work shows the process of long division used by a student to divide the polynomial $3 x^{3}-7 x-9$ by $x-2$.

$$
x-2 \begin{array}{r}
3 x^{2}+6 x+5 \\
\frac{3 x^{3}+0 x^{2}-7 x-9}{3 x^{3}-6 x^{2}} \downarrow \\
6 x^{2}-7 x \\
\frac{6 x^{2}-12 x}{5 x-9} \\
\frac{5 x-10}{1}
\end{array}
$$

$$
3 x^{3}-7 x-9=(x-2)\left(3 x^{2}+6 x+5\right)+1
$$

Exploring Synthetic Division

A student who was repeating this course showed his friend a much quicker method for determining the above result. His work is shown.

$$
3 x^{3}-7 x-9=(x-2)\left(3 x^{2}+6 x+5\right)+1
$$

a) By looking at both sets of work, explain how the following parts of the synthetic division are related to the long division.

Condor las then sh
b) Can you identify how the sets of numbers $6,12,10$, and $3,6,5,1$ are obtained?

Complete the following synthetic division to determine the quotient and remainder when $2 x^{3}-3 x^{2}-8 x+15$ is divided by $x-1$. Express the answer in the form $\frac{P}{D}=Q+\frac{R}{D}$.

$$
\frac{2 x^{3}-3 x^{2}-8 x+15}{x-1}=2 x^{2}-x-9+\frac{6}{x-1}
$$

Consider the polynomial $5 x^{5}-6 x^{4}+3 x^{2}-2 x+1$.
a) Use synthetic division to find the quotient and remainder when

quoting:
$5 x^{4}-16 x^{3}+32 x^{2}-61 x+120$
remainder:
-239
b) Find the value of the polynomial when x is replaced by -2 .

$$
\begin{aligned}
P(-2) & =5(-2)^{5}-6(-2)^{4}+3(-2)^{2}-2(-2)+1 \\
& =-239
\end{aligned}
$$

$$
P(-2) \text { is the remainder from synthetic division. }
$$

If $x+3$ is the divisor in the following synthetic division, calculate the values of m and p.

2	2	$-m$	16 n
2		$2 m$	p

When $2 x^{3}-4 x^{2}+a x+3$ is divided by $x+2$, the remainder is 3 . Determine the value of a.

OR

$$
P(-2)=3=2(-2)^{3}-4(-2)^{2}+(-2) a+3
$$

Complete Assignment Questions \#1- \#7

Synthetic Division by $a x-b$

Use synthetic division to determine the quotient and remainder when the polynomial $2 x^{3}+x^{2}+5 x-1$ is divided by $2 x-1$.
Note that $2 x-1=(2)-\frac{1}{2}$.
We divide first by $x-\frac{1}{2}$. $=\frac{1}{2}$

$$
\begin{aligned}
P & =D Q+R \\
\text { so } \quad P & =\left(x-\frac{1}{2}\right)\left(2 x^{2}+2 x+6\right)+2 \\
& =\left(x-\frac{1}{2}\right)(2)\left(x^{2}+x+3\right)+2 \\
& =(2 x-1)(\quad)+
\end{aligned}
$$

Divide $6 x^{3}-8 x^{2}-5 x+5$ by $3 x+2$ using synthetic division and write the division in the form $P=D Q+R$.

Quotient is \qquad
Remainder is \qquad
\qquad

Complete Assignment Questions \#8 - \#11
Copyright © by Absoluta This book is NOT covered by the Cancopy agreement.

