Polynomial Functions and Equations Lesson \#4: The Remainder Theorem and the Factor Theorem

Review

a) Use synthetic division to divide
$P(x)=x^{3}-2 x^{2}-4$ by $x+1$.
b) Use synthetic division to divide
$P(x)=x^{2}-2 x-5$ by $x-2$.

Calculate $P(-1)$ in
$P(x)=x^{3}-2 x^{2}-4$.
c) Complete the following statements based on your observations in a) and b).

- When $P(x)=x^{3}-2 x^{2}-4$ is divided by $x+1$, the \qquad is equal to $P(\quad)$.
- When $P(x)=x^{2}-2 x-5$ is divided by $x-2$, the \qquad is equal to $P(\quad)$.

The Remainder Theorem

$$
f(x)=\text { remainder. }
$$

When a polynomial function, $P(x)$, is divided by a binomial, $(x-a)$, the remainder obtained is equal to the value of the polynomial when $x=a$, i.e. the remainder is $\boldsymbol{P}(\boldsymbol{a})$.

Proof:
The division algorithm states $P(x)=D(x) \cdot Q(x)+R(x)$
Using $x-a$ as the divisor, we get $\quad P(x)=(x-a) \cdot Q(x)+R(x)$
To find $P(a)$ we can substitute a for x to get

$$
\begin{aligned}
P(a) & =(a-a) \cdot Q(a)+R \\
& =0 \cdot Q(a)+R \\
& =0+R
\end{aligned}
$$

$\therefore P(a)=R \quad$ which is what the remainder theorem states.

Use the remainder theorem to find the remainder when $P(x)=6 x^{3}-4 x^{2}+8 x+6$ is divided by
i) $x+1$

Find a if the remainder is 131 when $P(x)=2 x^{4}-x^{3}-a x+8$ is divided by $x-3$;

a) using synthetic division b) using the remainder theorem $\rightarrow P(3)=131$

$$
\begin{aligned}
& 131=2(3)^{4}-(3)^{3}-3 a+8 \\
& 3 a=162-27+8-131 \\
& \frac{3 a}{3}=\frac{12}{3} \\
& a=4
\end{aligned}
$$

Find the coefficients d and c in $P(x)=2 x^{4}+d x^{3}-c x^{2}+5 x-8$ if the remainder is -41 when divided by $x+3$ and the remainder is 74 when divided by $x-2$.

Complete Assignment Questions \#1-\#5

The Factor Theorem
The binomial $x-a$ is a factor of the polynomial function $P(x)$ if, and only if, $P(a)=0$. Note that a is then a zero of the polynomial function $P(x)$.

Use the factor theorem to determine which of the following is a factor of $4 x^{3}-16 x^{2}-x+4$.
a) $x+2$

$$
\begin{aligned}
& P(-2)=-90 \\
& \therefore \quad x+2 \text { is not } \\
& \text { a factor. }
\end{aligned}
$$

b) $P\left(-\frac{2}{3}\right)=0 \rightarrow$ polynomial $P(x)$ if

Write a binomial factor with integral coefficients of the polynomial $P(x)$ if
a) $P(3)=0$
${ }^{\downarrow} x$ - 3 is a tabor

If $P(5)=P(-2)=0$, determine a second degree factor of the polynomial $P(x)$.

b) $2 x-1$

Show that 1 is a root of the equation $x^{3}-9 x^{2}+20 x-12=0$ and find the other roots.

$$
(x-1)\left(x^{2}-f_{x}+12\right)
$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cançpy agreement. $(x-1)(x-6)(x-2)$

10,11

