Functions and Relations Lesson \#3: Operations with Functions - Part Two

Investigating the Product of Two Functions

In this investigation we will use the same functions, f and g, as in the investigation in lesson 2.

x	$f(x)$	$g(x)$	$(f g)(x)$
-4	-7	-7	49
-3	-5	-6	30
-2	-3	-5	15
-1	-1	-4	4
0	1	-3	-3
1	3	-2	-6
2	5	-1	-5
3	7	0	0
4	9	1	9

a) Complete the table above for $(f g)(x)$.
b) Plot the points from the table which will fit on the grid and complete the sketch of $y=(f g)(x)$ for $x \in R$.

c) The functions f and g above are $f(x)=2 x+1$ and $g(x)=x-3$.

Write a simplified expression for the function $(f g)(x)$.

$$
\begin{aligned}
(f g)(x) & =(2 x+1)(x-3) \\
& =2 x^{2}-5 x-3
\end{aligned}
$$

d) Use a graphing calculator to graph the function $y=(f g)(x)$ from part c$)$ and compare this graph with the graph from part b).
e) Determine the domain and range of the function $(f g)(x)$.

$$
D: x=\mathbb{R}
$$

R :
f) Calculate the value of $(f g)(8)$ in two different ways.

$=8$
g) Complete the statement.

" In this investigation, the product of two functions whose graphs are straight lines is a gralatie function."
Can you find two functions whose graphs are straight lines where this is not the case?

$$
? \quad f(x)=5
$$

Consider the functions $f(x)=3 \sqrt{x}-2$ and $g(x)=\sqrt{x}-5$.
a) Write an expression in simplest form for each of the following functions.
i) $(f-g)(x)$
ii) $(f g)(x)$
$=(3 \sqrt{x}-2)(\sqrt{x}-5)$
$=(3 \sqrt{x}-2)-(\sqrt{x}-5)$
$=2 \sqrt{x}+3$
b) Evaluate
$=3 x$

$$
=2 \sqrt{16}+3
$$

$$
=11
$$

$$
\begin{aligned}
& =3(49)-17 \sqrt{49}+10 \\
& =38
\end{aligned}
$$

Complete Assignment Questions \#1-\#6

Assignment

1. Consider functions f and g defined for all real numbers. Partial graphs of the functions are shown on the grid. Both functions have integer values when x is an integer.
a) Complete the table above for $(f g)(x)$.

x	$f(x)$	$g(x)$	$(f g)(x)$
-4			
-3			
-2			
-1			
0			
1			
2			
3			
4			
5			

b) Plot the points from the table which will fit on the grid and complete the sketch of $y=(f g)(x)$ for $x \in R$.

Functions and Relations Lesson \#4: Operations with Functions - Part Three

Investigating the Quotient of Two Functions

Two functions $f(x)$ and $g(x)$ are defined for all real numbers. The graphs of the functions are shown on the grid. The points marked with dots have integer coordinates.
a) Complete the table below.

x	$f(x)$	$g(x)$	$\left(\frac{f}{g}\right)(x)$
4	14	2	$14 / 2=7$
3	6	1	6
2	0	0	undefined
1	-4	-1	4
0	-6	-2	3
-1	-6	-3	2
-2	-4	-4	1
-3	0	-5	0
-4	6	-6	-1

$$
y=(f)(x)
$$

b) Explain why the domain of the function $\left(\frac{f}{g}\right)(x)$ is not $x \in R$.

$$
\begin{aligned}
& g(x)=0, x=1 R_{\text {exp }} x \neq 2 \\
& =0
\end{aligned}
$$

c) Sketch the graph of $y=\left(\frac{f}{g}\right)(x)$ showing the domain restriction by drawing an open circle on the graph.
d) The functions f and g above are $f(x)=x^{2}+x-6$ and $g(x)=x-2$. Write and simplify an expression for the function $\left(\frac{f}{g}\right)(x)$, including the domain restriction.

$$
\left(\frac{f}{g}\right)(x)=\frac{x^{2}+x-6}{x-2}=\frac{(x-2)(x+3)}{x-21}=x+3
$$

e) Evaluate $\left(\frac{f}{g}\right)_{(-6) .}=-6+3=-3$

- In the Investigation, the graph of $\left(\frac{f}{g}\right)(x)$ cannot include the point $(2,5)$ since there is a domain restriction $x \neq 2$. This results in a "hole" in the graph represented by an open circle. We refer to this hole as a point of discontinuity and this concept will be investigated in more detail in the unit on Rational Functions.
- In the Investigation, the quotient of a quadratic function and a linear function simplifies to a linear function with a domain restriction. This is not always the case. In many examples the quotient of two functions cannot be reduced to a simpler function.

In each case, write and simplify (where possible) an expression for $\left(\frac{f}{g}\right)(x)$.
Include any domain restrictions.
a) $f(x)=2 x+5, g(x)=x+5 \quad$ b) $f(x)=x^{2}-2 x-35, g(x)=x-7$

$x \neq-5$
$\left(\frac{f}{f}\right)(x)=\frac{x^{2}-2 x-35}{x-7} \quad x \neq 7$

$$
\begin{aligned}
\text { c) } f(x)= & x-2, g(x)=x^{2}-5 x+6 \quad x \neq 2,3 \\
\left(\frac{f}{\partial}\right)(x)=\frac{x-2}{x^{2}-5 x+6} & =\frac{x^{\prime}}{(x-3)(x-2)} \\
& =\frac{1}{x=3}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{(x-7)^{\prime}(x+5)}{x-71} \\
=x+5
\end{gathered}
$$

Consider the functions $f(x)=2 x^{2}-13 x-7$ and $g(x)=2 x+1$.
a) State the domains of f and g.

$$
x=1 R \text { for both. }
$$

b) Write an expression in simplest form for $\left(\frac{f}{g}\right)(x)$. State the domain.

$$
\left(\frac{f}{y}\right)(x)=\frac{2 x^{2}-13 x-7}{2 x+1}
$$

$$
x=\mathbb{1} \text { exert } x \neq-\frac{1}{2}
$$

$$
=\frac{(2 x+1)(x-7)}{2 x+1}
$$

$$
=x-7
$$

c) Explain two different ways to evaluate $\left(\frac{f}{g}\right)$ (3). Calculate $\left(\frac{f}{g}\right)$ (3).
(1) $=3-7$
(2)

Complete Assignment Questions \#1-\#7

Consider the functions $f(x)=\frac{2 x}{x-1}$ and $g(x)=\frac{x}{x-3}$.
a) State the domains of f and g.
$f(x): x=\mathbb{R}$ erupt $x \neq 1$

$$
g(x): x=\operatorname{le}_{x \rightarrow 5} x+5
$$

b) Evaluate $3(f g)(2)$.

$$
3\left(\frac{2(2)}{2 \pi}\left(\frac{2}{2-1}\right)=-24\right.
$$

c) Write an expression in simplest form for $(f+g)(x)$. State any restrictions on x.

$$
\begin{aligned}
&(f+g)(x)=\frac{2 x}{x-1}+\frac{x(x-3)}{x-3}=\frac{2 x^{2}-6 x+x^{2}-x}{(x-1)(x-3)} \\
&=\frac{3 x^{2}-7 x}{(x-1)(x-3)}=\frac{x(3 x-7)}{(x-1)(x-3)} \\
& x \neq 1,3
\end{aligned}
$$

d) Write an expression in simplest form for $\left(\frac{f}{g}\right)(x)$. State any restrictions on x

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x) & =\frac{2 x}{x-1} \div \frac{x}{x-3} \\
& =\frac{2 x}{x-1} \cdot \frac{x-3}{8,} \\
& =\frac{2(x-3)}{x-1} \text { or } \frac{2 x-6}{x-1}
\end{aligned}
$$

Complete Assignment Questions \#8 - \#11

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

