Trigonometry - Functions and Graphs Lesson \#7:
 Transformations of Trigonometric Functions - Part One

In the next two lessons we will consider the graphs of the functions whose equations are

$$
y=a \sin [b(x-c)]+d \quad \text { and } \quad y=a \cos [b(x-c)]+d
$$

and relate them to the graphs of the functions whose equations are $y=\sin x$ and $y=\cos x$.
In this lesson we concentrate on the effects of the parameters a and b.

a) Use the knowledge gained from the transformation unit to describe how the graph of the given function compares to the graph of $y=\sin x$, where x is in degrees.
i) $y=2 \sin x$ vest. stretch b/ a factor of 2
ii) $y=\sin 2 x$ hor. comp. by a factor of $\frac{1}{2}$
iii) $y=-3 \sin x$ reflection
vent. exp. by a factor of 3
iv) $\begin{aligned} & y=\sin (-3 x) \quad \text { refl. on } y \text {-axis } \\ & \text { hor. cosy. by a fucturof } \frac{1}{3}\end{aligned}$
b) In which of the above examples is there a change in amplitude compared to the graph of $y=\sin x$?
c) In which of the above examples is there a change in period compared to the graph of $y=\sin x$?
d) Complete the table. Use a graphing calculator if necessary.
e) Describe the effect of the parameter " a " on the graphs of $y=a \sin x$.
f) Describe the effect of the parameter " b " on the graphs of $y=\sin b x$.

Equation	Amplitude	Period
$y=\sin x$	1	2π
$y=2 \sin x$	2	2π
$y=\sin 2 x$	1	π
$y=-3 \sin x$	3	2π
$y=\sin (-3 x)$	1	2π
$y=5 \sin 4 x$	5	$\frac{\pi}{3}$
$y=\frac{1}{3} \sin \frac{1}{2} x$	$\frac{1}{3}$	4π
$y=a \sin b x$	a	2π

g) Would you expect similar effects on the graph of $y=a \cos b x$? Investigate if necessary.

Effects of a and b in $y=a \sin b x, y=a \cos b x$, and $y=a \tan b x$

Changing the parameter " a " on the graphs of $y=a \sin x$ and $y=a \cos x$ results in a vertical stretch about the \boldsymbol{x}-axis with the following:

- If $a>0$, the result is a vertical stretch of factor a about the x-axis.
- If $a<0$, the result is a reflection in the x-axis and a vertical stretch of factor $|a|$ about the x-axis.

Changing the parameter " a " on the graph of $y=a \tan x$ also results in a vertical stretch of factor " a " about the x-axis.

Changing the parameter " b " on the graphs of $y=\sin b x, y=\cos b x$, and $y=\tan b x$ results in a horizontal stretch about the y-axis with the following:

- If $b>0$, the result is a horizontal stretch of factor $\frac{1}{b}$ about the y-axis.
- If $b<0$, the result is a reflection in the y-axis and a horizontal stretch of factor $\frac{1}{|b|}$ about the y-axis.

$$
\begin{aligned}
& \text { amplitude }=|a|=\frac{\text { Max }- \text { Min }}{2} \\
& \text { period }=\frac{360^{\circ}}{|b|} \text { (for degree measure) } \\
& \text { period }=\frac{2 \pi}{|b|} \text { (for radian measure) }
\end{aligned}
$$

$$
y=a \sin b x \text { or } y=a \cos b x \quad y=a \tan b x
$$

$$
\begin{aligned}
& \text { amplitude is not applicable } \\
& \text { period }=\frac{180^{\circ}}{|b|} \text { (for degree measure) } \\
& \text { period }=\frac{\pi}{|b|} \text { (for radian measure) }
\end{aligned}
$$

Hints for Graphing a Trigonometric Function Manually

- Sketch the primary trigonometric graph, i.e. $y=\sin x$ or $y=\cos x$.
- Adjust the basic graph for any change in amplitude by considering the max and min points.
- Adjust the new graph for any change in period by dividing the period into four parts using the maximum and minimum points, and the points where the graph intersects the mid-line (the horizontal line running through the centre of the graph).

b) Sketch the graph on the grid. Use a graphing calculator to verify.

Write the equation of
a) a sine function having an amplitude of $\frac{2}{3}$ and a period of $\frac{\pi}{6}$

$$
P=\frac{2 \pi}{b} \quad b=\frac{2 \pi}{p}
$$

b) a cosine function having an amplitude of 3 and a period of 720°
 $c=0$
$d=0$

$$
y=3 \cos \frac{1}{2} x
$$

c) a tangent function having a period of $\frac{\pi}{2}$.

$c=0$

$$
y=\tan 2 x
$$

* tan function peri $=\pi$ *
b) Determine the equation of the sine function which the graph represents.

$$
\begin{aligned}
& a=3 \\
& b=\frac{2 \pi}{\pi}=2
\end{aligned}
$$

The graph represents the effect of tides on mean sea level over a 24 hour period. The graph has equation $h(t)=a \cos b t$, where t is in hours and h is the height, in metres, relative to mean sea level.
Determine the equation of the graph.

$$
a=4 \quad b=\frac{2 \pi}{12}=\frac{\pi}{6}
$$

$h(t)=4 \cos \frac{\pi}{3} t$

Complete Assignment Questions \#1-\#16

Assignment

\#1-13 Ca, ce...

1. Describe how the graph of the given function compares to the graph of $y=\cos x$.

a) $y=5 \cos x$
b) $y=2 \cos \frac{1}{2} x$
c) $y=-\frac{1}{3} \cos 4 x$
d) $y=0.2 \cos (-6 x)$
2. State the amplitude.
a) $y=5 \sin x$
b) $y=\cos 3 x$
c) $y=\frac{7}{3} \sin 2 x$
d) $y=-4 \cos \frac{5}{6} \theta$
3. State the period in degrees.
a) $y=6 \sin x$
b) $y=\tan 3 x$
c) $y=\frac{2}{3} \cos \frac{x}{7}$
d) $y=-2 \tan \frac{2}{3} \theta$
4. State the period in radians.
a) $y=7 \tan x$
b) $y=\cos 3 x$
c) $y=\frac{1}{4} \sin \frac{x}{3}$
d) $y=5 \tan \frac{1}{2} \theta$
