Trigonometry - Functions and Graphs Lesson \#8:
 Transformations of Trigonometric Functions - Part Two

In this lesson we will consider the graphs of the functions whose equations are

$$
y=a \sin [b(x-c)]+d \quad \text { and } \quad y=a \cos [b(x-c)]+d
$$

and relate them to the graphs of the functions whose equations are $y=\sin x$ and $y=\cos x$.
In the first part of the lesson we concentrate on the effects of the parameters c and d.

a) Describe how the graph of the given function compares to the graph of $y=\sin x$, where x is in degrees.

In trigonometry

- a horizontal translation is called a horizontal phase shift, and,
- a vertical translation is called a vertical displacement.

Complete the table to describe how the graph of the given function compares to the graph of $y=\sin x$ where x is in radians. Use a graphing calculator if necessary.

Equation	Horizontal Phase Shift	Vertical Displacement
$y=\sin x$	0	0
$y=\sin \left(x-\frac{\pi}{4}\right)$	$\frac{\pi}{4}$ alias right	0
$y=\sin x+5$	0	5 waits yo.
$y+\pi=\sin \left(x+\frac{3 \pi}{2}\right)$	$\frac{3 \pi}{2}$ rads left	π waits dove.
$y=\sin (x-c)+d$	C waits leftrint dunite up/atan	
$y=a \sin [b(x-c)]+d$	11	us

Would you expect similar effects on the graph of $y=a \cos [b(x-c)]+d$? Investigate if necessary.

$$
\text { Effects of } c \text { and } d \text { in } y=a \sin [b(x-c)]+d \text { and } y=a \cos [b(x-c)]+d
$$

Changing the parameter " c " on the graphs of $y=a \sin [b(x-c)]+d$ and $y=a \cos [b(x-c)]+d$
results in a horizontal phase shift with the following:

- a horizontal phase shift to the right if $c>0$
- a horizontal phase shift to the left if $c<0$

Changing the parameter " d " on the graphs of $y=a \sin [b(x-c)]+d$ and $y=a \cos [b(x-c)]+d$ results in a vertical displacement with the following:

- a vertical displacement up if $d>0$
- a vertical displacement down if $d<0$

The vertical displacement is determined from a graph using the formula $d=\frac{\operatorname{Max}+\operatorname{Min}}{2}$.

Summary of the Effects of the Parameters a, b, c, and d

For $y=a \sin [b(x-c)]+d \quad$ For $y=a \tan [b(x-c)]+d$ $y=a \cos [b(x-c)]+d$
amplitude $=|a|=\frac{\text { Max }- \text { Nim }}{2}$
period $=\frac{360^{\circ}}{|b|}$ (for degree measure)
period $=\frac{2 \pi}{|b|}$ (for radian measure)
horizontal phase shift $=c$
• to the right if $c>0$
• to the left if $c<0$
vertical displacement $=d$
• up if $d>0$
• down if $d<0$
• $d=\frac{\text { Max }+ \text { Min }}{2}$

$$
\begin{aligned}
& \text { amplitude - not applicable } \\
& \begin{array}{l}
\boldsymbol{a} \text { value represents a vertical stretch } \\
\text { of factor }|a|
\end{array} \\
& \text { period }=\frac{180^{\circ}}{|b|} \text { (for degree measure) } \\
& \text { period }=\frac{\pi}{|b|} \text { (for radian measure) } \\
& \text { horizontal phase shift = } c \\
& \text { - to the right if } c>0 \\
& \text { - to the left if } c<0 \\
& \text { vertical displacement = } d \\
& \text { - up if } d>0 \\
& \text { - down if } d<0
\end{aligned}
$$

$$
\begin{aligned}
& a=2 \rightarrow \text { anplinde }=2 \\
& b=3 \rightarrow P=\frac{2 \pi}{3}
\end{aligned}
$$ where $a=1$, and $b=1$. Write the equation which represents

a) a cosine function having a horizontal phase shift of 75° right

$$
y=\cos \left(x-75^{\circ}\right)
$$

$c=-\pi \rightarrow$ phases shift \rightarrow Tradias left $d=-4 \rightarrow$ displumenent $\rightarrow 4$ vits down
 the following functions defined on $x \in R$.
a) $y=2 \sin 3(x+\pi)-4$

Consider equations of the form $y=a \sin [b(x-c)]+d$ and $y=a \cos [b(x-c)]+d$,

$$
x \rightarrow x-75^{\circ}
$$

b) a sine function having a horizontal phase shift of $\frac{3 \pi}{5}$ radians left, $x \rightarrow x+\frac{3 \pi}{3}$
and a vertical displacement 4 units up

Find the amplitude, period, horizontal phase shift, and vertical displacement of the graphs of
b) $y=-\frac{2}{3} \cos \frac{1}{4}\left(x-\frac{\pi}{12}\right)+3$

Find the amplitude, period, horizontal phase shift, and vertical displacement of the graphs of the following functions defined on $x \in R$.
a)

$$
\begin{gathered}
y-2 \sin (3 x+\pi)-7 x)-4 \\
y=2 \sin 3\left(x+\frac{\pi}{3}\right)-4
\end{gathered}
$$

b) $y=-\cos \left(2 x-\frac{\pi}{2}\right)+\pi$

$$
y=-\cos 2\left(x-\frac{\pi}{4}\right)
$$

$$
a_{a p p}=2
$$

c) Compare the answer to Class Ex. \#4a and Class Ex. \#5a.

Complete Assignment Questions \#1 - \#2
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

$$
\begin{aligned}
& \begin{array}{l}
\text { anp. }=\frac{2}{3} \\
\text { Period }= \\
3
\end{array} \pi / 4=8 \pi
\end{aligned}
$$

The graphs from a) - d) represent the same trigonometric function.
a) Write the equation of the graph in the form $y=a \sin (x-c)$ if $a>0$ and there is a minimum possible horizontal phase shift.

b) Write the equation of the graph in the form $y=a \sin (x-c)$ if $a<0$ and there is a minimum possible horizontal phase shift.

d) Write the equation of the graph in the form $y=a \cos (x-c)$ if $a<0$ and there is a minimum possible horizontal phase shift.

$$
\begin{aligned}
& a=-4 \\
& b=1 \\
& c=-\frac{\pi}{b} \\
& d=0
\end{aligned}
$$

phaseshiff

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Consider the graph shown.
a) If the graph represents a sine function where $a>0$, complete the table and write the equation represented by the graph.
$a=3$

$b=\frac{2 \pi}{4 \pi}=\frac{1}{2}$
$c=-\frac{\pi}{3}$
$d=-2$

Write the equation if the graph in a) represents a sine function where $a<0$.
c) If the graph represents a cosine function where $a>0$, complete the table and write the equation represented by the graph.

$$
\begin{aligned}
& a=3 \\
& b=\frac{2 \pi}{4 \pi}=\frac{1}{2} \\
& c=\frac{2 \pi}{3} \\
& d=-2
\end{aligned}
$$

 $y=-3 \cos \frac{1}{2}\left(x+\frac{4 \pi}{3}\right)-2$

Consider the graphs of the functions $y=a \sin [b(x-c)]+d$ and $y=a \cos [b(x-c)]+d$.
a) Changing which of the parameters a, b, c and d affect the
i) domain?
A BN
ii) range?
as
iii) amplitude?
iv) period?

v) zeros?
a if $d \geqslant 0$
b) State the maximum and minimum values of the functions in terms of a, b, c, and d, if $a>0$.

Max: $a+d$
min: $-a+d$
c) Determine the range of the function $y=3 \sin 2(x-\pi)-4 . \quad a=3 \quad d=-4$

Assignment

1. Determine the amplitude, period, Horizontal phase sift, and the vertical displacement for each function.
a) $y=\cos \left(x-\frac{\pi}{4}\right)+3$
b) $y=3 \cos \frac{1}{2}\left(x-\frac{\pi}{2}\right)$
c) $y=3 \cos \frac{1}{2} x-\frac{\pi}{2}$
d) $y=\sin \left(4 x-\frac{\pi}{2}\right)$
e) $y=-2 \cos 3\left(x-45^{\circ}\right)+4$
f) $y=7 \sin \left(\frac{1}{4} x+20^{\circ}\right)-1$
