Trigonometry - Equations and Identities Lesson #2: Solving Second Degree Trigonometric Equations

In this lesson we will be solving **second degree** equations where the power of the trigonometric function is two (e.g. $\sin^2 x - 3 \sin x = 0$).

Trigonometric equations which can be solved by using identities will be covered in lesson 6.

Factoring Trigonometric Expressions

Just as with polynomial expressions, trigonometric expressions can be factored. The ability to factor trigonometric expressions is a useful skill in two areas:

- solving trigonometric equations (in this lesson)
- proving trigonometric identities (in lesson 6)

In factoring trigonometric expressions we can apply three basic factoring techniques - common factor, difference of two squares, and trinomials of the form $ax^2 + bx + c$, $a \neq 0$.

- a) Use a graphical approach to determine the roots of the equation where $0 \le x \le 2\pi$. Give solutions as exact multiples of π .
- **b**) State the general solution to the equation.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Can be the the zeros of the following functions on the specified domain.
(a)
$$f(x) = \csc^2 x - 3 \csc x - 28$$
, (b) $g(\theta) = 2 \cos^2 \theta + 5 \cos \theta - 3$, (domain $0^\circ x \le 180^\circ$ **X** sower to the nearest degree
(b) $g(\theta) = 2 \cos^2 \theta + 5 \cos \theta - 3$, (domain $-\pi \le \theta \le \pi$
(c) $= \csc^2 x - 3 \csc x - 28$
(c) $= (\csc x - 4)$ (c) $(\csc x + 4)$
(c) $= (\csc x - 4)$ (c) $(\csc x + 4)$
(c) $= (\csc x - 4)$ (c) $(\csc x + 4)$
(c) $= (\csc x - 4)$ (c) $(\csc x + 4)$
(c) $= (\csc x - 4)$ (c) $(\csc x + 4)$
(c) $= (\csc x - 4)$ (c) $(\csc x + 4)$
(c) $= (\csc x - 4)$ (c) $(\csc x + 4)$
(c) $= (\csc x - 4)$ (c) $(\csc x + 4)$
(c) $(= 1)^{-1}$
(c) $(= 1)^{-1}$

g)
$$4\cos^2 A - 4\cos A - 3$$
 h) $2\sin^2 x - 7\sin x + 6$