Trigonometry - Equations and Identities Lesson \#2: Solving Second Degree Trigonometric Equations

In this lesson we will be solving second degree equations where the power of the trigonometric function is two (e.g. $\sin ^{2} x-3 \sin x=0$).

Trigonometric equations which can be solved by using identities will be covered in lesson 6 .

Factoring Trigonometric Expressions

Just as with polynomial expressions, trigonometric expressions can be factored.
The ability to factor trigonometric expressions is a useful skill in two areas:

- solving trigonometric equations (in this lesson)
- proving trigonometric identities (in lesson 6)

In factoring trigonometric expressions we can apply three basic factoring techniques common factor, difference of two squares, and trinomial of the form $a x^{2}+b x+c, a \neq 0$.

Factor the following trigonometric expressions:
a) $8 \tan A+4$
b) $\sin ^{2} x-3 \sin x$
$\sin x(\sin x-3)$
c) $\frac{4 \sin ^{2} x-1}{(2 \sin x+1)(2 \sin x-1)}$
$4(2 \tan A+1)$
e) $2 \cos ^{2} x+7 \cos x-4$
d) $\csc ^{2} x-3 \csc x-28$
let $n=\csc x$
let $n=\cos x$
$2 n^{2}+7 n-4$
$\binom{(n-7)(n+4)}{(\csc x-7)}$

Complete Assignment Question \#1

Solving a Second Degree Equation Using a Graphical Approach

Consider the equation $2 \sin ^{2} x=1-\sin x$.
a) Use a graphical approach to determine the roots of the equation where $0 \leq x \leq 2 \pi$. Give solutions as exact multiples of π.
b) State the general solution to the equation.

Solving a Second Degree Equation Using an Algebraic Approach

＊set to zero＊
Consider the equation $2 \sin ^{2} x=1-\sin x$ ．
a）Use an algebraic approach to determine the roots of the equation where $0 \leq x \leq 2 \pi$ ． Give solutions as exact values．

$$
2 \sin ^{2} x+\sin x-1=0
$$

$(2 \sin x-1)(\sin x+1)=0$

zero product law

$$
\begin{aligned}
& \text { ret }=\frac{\pi}{6} \sin x=\frac{1}{2} \\
& \text { III } x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}
\end{aligned}
$$

b）State the general solution to the equation．

$$
x=\frac{1}{6}+2 \pi n, \frac{\pi}{6}+2 \pi n, \frac{3 \pi}{2}+2 \pi n \quad n \in I
$$

Use an algebraic procedure to determine the roots of the equation on the given domain and write the general solution．
a） $4 \sin ^{2} A-1=0,0 \leq A \leq 2 \pi$
b） $\tan ^{2} x+\tan x=0, \quad 0 \leq x \leq 2 \pi$

$$
\tan x=0 \quad \tan x=-1
$$

$$
x=0, \pi, 2 \pi
$$

$$
-1
$$

[I, 正

$$
x=\pi_{n}, \frac{3 \pi}{4}+\pi_{n}
$$

Copyright © by Absolute Value Publications．This book is NOT covered by the Cancopy agreement．

$$
\begin{aligned}
& \begin{array}{c}
(2 \sin A+1)(2 \sin A-1) \\
\downarrow \\
\downarrow
\end{array} \\
& \sin A=-\frac{1}{2} \quad \sin A=\frac{1}{2} \\
& r e f L=\frac{\pi}{6} \\
& \operatorname{ref} L=\frac{\pi}{6} \\
& \text { in } I, I \\
& \text { 的吕, II } \\
& A=\frac{\pi}{6}, \frac{57}{6}, \frac{7 \pi}{6}, \frac{11}{6} \\
& \text { yea. sol: } A=\frac{\pi}{6}+2 \pi, \frac{{ }^{7}}{6}+2 \pi n \text {, } \\
& \frac{7 \pi}{6}+2 \pi_{n}, \frac{\pi I}{6}+2 \pi n
\end{aligned}
$$

Determine the zeros of the following functions on the specified domain.
a) $f(x)=\csc ^{2} x-3 \csc x-28$,
domain $0^{\circ} \leq x \leq 180^{\circ}$ I\&I On y
Answer to the nearest degree
b) $g(\theta)=2 \cos ^{2} \theta+5 \cos \theta-3$, domain $-\pi \leq \theta \leq \pi$

$0=(\csc x-7)(\csc x+4)$
$\csc x=7 \quad \csc x=-4$
$\sin x=\frac{1}{7} \quad \sin x=-\frac{1}{4}$
$\sin ^{-1}\left(\frac{1}{7}\right)=r e f L=8^{\circ} \quad X$

Complete Assignment Questions \#2-\#13

Assignment

\# $1-3,7,8$

1. Factor the following trigonometionexpiessions.
a) $4 \sin ^{2} \theta-\cos ^{2} \theta$
b) $\cot ^{2} x-\cot x$
d) $\sec x \sin ^{2} x-0.25 \sec x$
e) $\cot ^{2} \theta-1$
f) $\sec ^{4} \theta-1$
g) $4 \cos ^{2} A-4 \cos A-3$
h) $2 \sin ^{2} x-7 \sin x+6$
c) $\sin ^{2} \theta+3 \sin \theta+2$
