Solving a Multiple Angle Equation Using a Graphical Approach

- **a**) Given tan $2x = \sqrt{3}$, where $0 \le x \le 2\pi$, find the exact values of *x* using a graphical approach.
- **b**) State the general solution to the equation $\tan 2x = \sqrt{3}$.
- c) Complete the following statement.

The general solution consists of answers which differ by _____ radians because the graph of $y = \tan 2x$ has a **period** of _____ radians.

Complete Assignment Questions #1 - #3

Consider the equation $\sin 3x = \frac{\sqrt{2}}{2}$.

a) Complete the following to solve the equation $\sin 3x = \frac{\sqrt{2}}{2}$, where $0 \le x \le 2\pi$.

- If x is defined for domain $0 \le x \le 2\pi$, then 3x is defined for domain $2 \le 3x \le 6\pi$.
- $\sin 3x = \frac{\sqrt{2}}{2} \quad \text{Quadrants } \vec{1} \text{ and } \vec{1} \quad \text{Reference angle} = \vec{4}$ $3x = \vec{4} \quad \text{or} \quad 2\pi + \underline{\qquad \text{or} \quad 2\pi + \underline{\qquad \text{or} \quad 4\pi + \underline{\qquad 0} \quad 4\pi +$

b) State the general solution to the equation $\sin 3x = \frac{\sqrt{2}}{2}$.

X====+==n,=+==neI

c) Verify the solution using a graphical approach.

• The general solution consists of two sets of answers which differ by $\frac{2\pi}{3}$ radians because the graph of $y = \sin 3x$ has a **period** of $\frac{2\pi}{3}$ radians.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Solving a Multiple Angle Equation Using an Algebraic Approach

Use the following procedure to solve multiple angle equations.

- 1. Find the domain for the multiple angle.
- 2. Solve for the multiple angle between 0 and 2π using the CAST rule and reference angle.
- **3.** Add the period of the trigonometric graph of the multiple angle to each of the answers in step 2 until you cover the domain in step 1.

b)

Consider the equation $\sin 2x = -\frac{1}{2}$.

a) Find the exact values of *x* using an algebraic approach where $0 \le x \le 2\pi$.

$$\begin{array}{c}
\mathbf{x} \in \mathcal{L} = \overline{\mathcal{L}} \quad \text{in } \overline{\mathcal{I}} \oplus \overline{\mathcal{I}} \\
\begin{array}{c}
\mathbf{x} = \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\begin{array}{c}
\mathbf{x} \in \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\begin{array}{c}
\mathbf{x} \in \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\begin{array}{c}
\mathbf{x} \in \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\begin{array}{c}
\mathbf{x} \in \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\begin{array}{c}
\mathbf{x} \in \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}} \\
\begin{array}{c}
\mathbf{x} \in \overline{\mathcal{I}} \\
\mathbf{x} = \overline{\mathcal{I}}$$

c) Complete the following statement.

The general solution consists of answers which differ by $\underline{\mathcal{T}}$ radians because the graph of $y = \sin 2x$ has a **period** of $\underline{\mathcal{T}}$ radians.

d) Verify the solution using a graphical approach.

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.