Trigonometry - Equations and Identities Lesson \#4: Trigonometric Identities - Part One

Equations and Identities

In mathematics it is important to understand the difference between an equation and an identity.
$2 x^{2}+3=11$ is an equation. It is only true for certain values of the variable x. The solutions to this equation are -2 and 2 which can be verified by substituting these values into the equation.
$(x+1)^{2}=x^{2}+2 x+1$ is an identity. It is true for all values of the variable x.

Reviewing Identities

Recall the basic trigonometric identities:

Basic Identities

$$
\sin \theta=\frac{y}{r} \quad \cos \theta=\frac{x}{r} \quad \tan \theta=\frac{y}{x} \quad \text { where } \quad x^{2}+y^{2}=r^{2}
$$

We have also met the reciprocal trigonometric identities :

Reciprocal Identities

$$
\csc x=\frac{1}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \cot x=\frac{1}{\tan x}
$$

We can use the Basic and Reciprocal trigonometric identities to prove the Quotient and Pythagorean identities.

Before doing this we will verify some identities using a particular case.

Use the basic identities to prove the identity $1+\tan ^{2} A=\sec ^{2} A$.

In the same way the basic identities can be used to prove the following:

Quotient Identities

$$
\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}
$$

Pythagorean Identities

$$
\sin ^{2} x+\cos ^{2} x=1 \quad 1+\tan ^{2} x=\sec ^{2} x \quad 1+\cot ^{2} x=\csc ^{2} x
$$

- These identities can be written in several ways and this should be remembered in trying to prove more difficult identities in the next lesson. For example

$$
\begin{array}{ll}
\sin ^{2} x=1-\cos ^{2} x & \cos ^{2} x=1-\sin ^{2} x \\
\tan ^{2} x=\sec ^{2} x-1 & \cot ^{2} x=\csc ^{2} x-1
\end{array}
$$

- We use the basic trigonometric identities in terms of x, y and r to prove only the Quotient and Pythagorean Identities.
- You will be asked to verify the remaining Quotient and Pythagorean Identities in the Assignment.
- Before considering more complex identities in the next lesson we need to review some skills in simplification and factoring which will help in the proofs.

Complete Assignment Questions \#1 - \#5

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Using Identities to Simplify Trigonometric Expressions

b)

$$
\begin{aligned}
\sin x+\cot x \cos x & =\sin x+\frac{\cos x}{\sin x} \cdot \cos x \\
& =\frac{\sin x^{2}+\cos ^{2} x}{\sin x}=\frac{1}{\sin x}=\csc x
\end{aligned}
$$

Express $\frac{2 \tan A}{1+\tan ^{2} A}$ in terms of $\sin A$ and $\cos A$ and write in simplest form.

$$
\begin{aligned}
& \frac{2 \tan A}{\sec ^{2} A}=\frac{\frac{2 \sin A}{\cos A}}{\frac{1}{\cos ^{2} A}} \\
& \frac{2 \sin A}{\sin A} \cdot \frac{\cos ^{5} A}{1} \\
& =2 \sin A \cos A
\end{aligned}
$$

Express each as a single trigonometric ratio. Use a graphing calculator to verify. Th Comagna deananior
a) $\frac{\sin ^{2} x}{\cos ^{2} x}+1=\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x$

Factor the following trigonometric expressions.
a)

$$
\begin{aligned}
& 3 \cos ^{4} \theta-3 \sin ^{4} \theta \\
& 3\left(\cos ^{4} \theta-\sin ^{4} \theta\right) \\
& 3\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& 3(\cos \theta+\sin \theta)(\cos \theta-\sin \theta) \\
& \text { Complete Assignment Questions \#6 - \#17 }
\end{aligned}
$$

b) $\sin ^{2} \theta+\sin ^{2} \theta \cot ^{2} \theta$

AssigMIMeMt

1. Verify the following identities
a) $\cot x=\frac{\cos x}{\sin x}$ for $x=60^{\circ}$

Verify the following identities for the given value of the variable.
b) $\sin ^{2} x+\cos ^{2} x=1$ for $x=\frac{\pi}{4}$

