Converting Between Degrees and Radians

Since an angle can be measured in degrees or radians, it is important to be able to convert from one measure to the other.

Consider a circle with a radius of r units. Complete the following:
a) i) One complete rotation in degrees is 360°.
ii) The arc length for one complete rotation is $2 \pi / \mathrm{c}$ which is the cirevaterence of the circle.

iii) The ratio, $\frac{\text { arc length }}{\text { radius }}=\frac{2 \pi r}{r}=2 \pi$
iv) $360^{\circ}=2 \pi$ radians.
b) i) One-half rotation in degrees is 180°.
ii) The arc length for one-half rotation is T/r.
iii) The ratio, $\frac{\text { arc length }}{\text { radius }}=\frac{\pi r}{r}=\pi$
iv) $180^{\circ}=\pi$ radians.
c) i) $\quad \pi$ radians $=180$ degrees
so 1 radian $=\frac{180}{\pi}$ degrees
To convert from radians to degrees, multiply by $\frac{180^{\circ}}{7}$.
ii) $\quad 180$ degrees $=\pi$ radians
so 1 degree $=\frac{\pi}{180^{\circ}}$ radians
To convert from degrees to radians,
multiply by $\frac{\pi}{160}$

- In mathematics, the symbol " \circ " following a number means the unit of angular measure is degrees.
- If there is no unit after the number, or there is the abbreviation "rad", or the word radians, then the unit is radians.
- For example, if you wish to write the sine ratio for a right angle, you must write $\sin 90^{\circ}$, and NOT sin 90.

Converting Between Degrees and Radians

- π radians $=180^{\circ}$
- Degrees to Radians multiply by $\frac{\pi}{180}$
- Radians to Degrees multiply by $\frac{180}{\pi}$

Convert from degrees to radians (give your answer as an exact value in terms of π).
a) $270^{\circ} x$
$\frac{\pi}{180^{\circ}}=\frac{3 \pi}{2}$
b) $315^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{7 \pi}{4}$

Convert the following from degrees to radians (to the nearest tenth).
a) $70 \approx x$

b) $205^{\circ} \times \frac{\pi}{180^{\circ}}=3.6 \mathrm{rads}$

Convert the following from radians to degrees.
a) $\frac{\pi}{4} \times$

$=45^{\circ}$
b) $\frac{-7 x}{21} x$
$\times \frac{60^{\circ}}{6}$

Convert the following from radians to degrees (to the nearest tenth).
a) 1.57 radians

Complete Assignment Questions \#1 - \#4

Coterminal Angles and Reference Angles in Radians

Fill in the blanks in the statements and table below using radian measure.

- Coterminal angles are angles with the same terminal arm.

They are separated by a multiple of 360°, or 271 radians.

- The principal angle of a set of coterminal angles is the smallest positive rotation angle with the same terminal arm.
The principal angle is between 0° and 360°, or between
0 radians and 2π radians.
- A reference angle is the acute angle formed between he terminal arm of the rotation angle and the x-axis. The relationship between rotation angle and reference angle in each quadrant is given in the table below.

Quadrant	Relationship in Degrees Rotation Angle $=$	Relationship in Radians Rotation Angle $=$
One	Reference Angle	referercs an
Two	$180^{\circ}-$ Reference Angle	$\pi-r e f L$
Three	$180^{\circ}+$ Reference Angle	$\pi+r e f L$
Four	$360^{\circ}-$ Reference Angle	$2 \pi-r e f L$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

In each of the following
i) draw the angle θ in standard position
ii) state the principal angle
iii) determine one positive and one negative coterminal angle for the angle θ
iv) write an expression involving the principal angle that represents all angles
in the domain $\theta \in R$ that are coterminal with the given angle
a) $\theta=\frac{3 \pi}{4}$
i)

b) $\theta=-\frac{\pi}{3}$

iii) $\frac{5 \pi}{3},-\frac{\pi}{3}-\frac{6 \pi}{3}=\frac{-7 \pi}{3}$
iv.) $\frac{3 \pi}{4}+2 \pi n \quad n \in I$
iv.) $\frac{5 \pi}{3}+2 \pi n n \in I$

Determine the reference angle for the following rotation angles.

c) $\frac{23 \pi}{6}$

Complete Assignment Questions \#5-\#7

Arc Length

In this lesson we defined the radian measure of an angle, θ, as

radian measure $=\frac{\text { length of arc forming the angle }}{\text { length of radius }}=\frac{\text { arc l }}{\text { rad }}$
can rearrange the formula $\theta=\frac{a}{r}$ in terms of arc length as

where $\theta=$ the measure of the angle in radians,
$a=$ the length of the arc around the angle, and
$r=$ the length of the radius.
This formula can be used to solve problems involving arc length, radius, and central angle, provided the angle is measured in radians.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

A circle with centre C and minor arc $A B$ measuring 15.2 cm is shown. If $\angle A B C=\angle B A C=\frac{\pi}{6}$ radians, find the length of the radius of the circle to the nearest tenth of a centimetre.

Complete Assignment Questions \#8 - \#17

Assignment

1. The diagram shows a series of rotation angles in standard position. The lines in the diagram are symmetrical about both the x-axis and the y-axis. Complete the diagram by determining both the degree measure and the radian measure at the end of each line.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

