Trigonometry - Functions and Graphs Lesson \#4: Determining Angle Measure from a Trigonometric Ratio

Review: Angle Measure in Degrees From Primary Trigonometric Ratios

In previous courses, we used the concepts of reference angle and sign of the trigonometric ratio to determine angle measures in degrees given a sine, cosine, or tangent ratio.

Use the following procedure to determine the angle measure between 0° and 360° given a trigonometric ratio.

Step 1: Determine the quadrants) the angle will be in by looking at the sign of the ratio.
Step 2: Determine the reference angle (always between 0° and 90°) and draw a rough sketch in the appropriate quadrants). To determine the reference angle, use
 of the absolute value of the given quantity.

Step 3: Determine the rotation angles) using the reference angle and the quadrants).

- Always check the given domain to determine which quadrants are valid in the calculation. Sometimes the domain is restricted to, for example, $0^{\circ} \leq \theta \leq 180^{\circ}$, or $90^{\circ} \leq \theta \leq 180^{\circ}$.
- In the next unit, we will consider domains less than 0° or greater than 360°.

Complete the following to solve $\cos \theta=-0.5$, where $0^{\circ} \leq \theta \leq 360^{\circ}$.

$$
\begin{aligned}
& \cos \theta=-0.5 \\
& \text { quadrants } 2 \text { and } 3
\end{aligned}
$$

$$
\cos ^{-1}(-0.5)=
$$

reference angle $=60^{\circ}$
in quadrant $\underline{2}$, rotation angle $=120^{\circ}$
in quadrant 3 , rotation angle $=240^{\circ}$

Given that $(\sin \theta)^{2}$ can be written as $\sin ^{2} \theta$, solve the equation $\sin ^{2} \theta=0.5$ on the interval $0^{\circ} \leq \theta \leq 360^{\circ}$.

Angle Measure in Degrees From Reciprocal Trigonometric Ratios
Since there are no calculator keys for cosecant, secant, or cotangent, we must rewrite the reciprocal ratios in their primary form.
For example, to solve $\cot x=\sqrt{3}$, we rewrite this in the primary form $\tan x=\frac{1}{\sqrt{3}}$.

Solve $\cot x=\sqrt{3}, 0^{\circ} \leq x \leq 360^{\circ}$.

$$
\begin{gathered}
\frac{1}{\tan x=\sqrt{3}}=\sqrt{3} \quad \tan x=\frac{1}{\sqrt{3}} \longrightarrow I I I \quad \begin{array}{l}
\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)= \\
I=30^{\circ}, \text { III }=210^{\circ}
\end{array} \text { ref }=30^{\circ}
\end{gathered}
$$

II $\rightarrow 142^{\circ}$
Determine the measure of x, to the nearest degree, where $0^{\circ} \leq x \leq 360^{\circ}$.
a) $\sec x=-1.2631$

$$
\cos x=\frac{1}{-1.2631}
$$

b) $\csc x=2.45$

$$
\sin x=\frac{1}{2.45}
$$

$$
I \rightarrow 24^{\circ}
$$

$$
\text { ref } L=38^{\circ}
$$

$$
r e f L=24^{\circ}
$$

$$
\mathbb{I I} \rightarrow 156^{\circ}
$$

III $\rightarrow 218^{\circ}$

Determine the measure of θ, to the nearest whole number, where $0^{\circ} \leq \theta \leq 360^{\circ}$.
a) $\cos \theta=0$

b) $\csc \theta$ is undefined

$0^{\circ}, 180^{\circ}, 360^{\circ}$

Complete Assignment Questions \#1 - \#4

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Angle Measure in Radians From Trigonometric Ratios

A similar procedure can be used to determine angle measure in radians by setting the calculator mode to radian measure.
Step 1: Determine the quadrants) the angle will be in by looking at the sign of the ratio.
Step 2: Determine the reference angle (always between 0 and $\frac{\pi}{2}$ (approximately 1.57)).
Draw a rough sketch in the appropriate quadrants).
To determine the reference angle, use

| and | sin | or 2 nd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

of the absolute value of the given quantity.
Step 3: Determine the rotation angles) using the reference angle and the quadrants).

In each case, determine the values) of θ to the nearest hundredth of a radian.
a) $\cos \theta=-0.5,0 \leq \theta \leq 2 \pi$
b) $\cot \theta=-\frac{5}{4}, 0 \leq \theta \leq \pi$ \%
II $\rightarrow \pi-1.00^{-1} \cos ^{-1}(-0.5)$
$=12.09 \mathrm{refL}=1.05$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopymann

$$
\# 1-6(a, c), 7-11
$$

$$
\text { II } \rightarrow \pi-0.67=2.47
$$

