c) Diagram 3 shows an angle of $30^{\circ} \left(\text{or } \frac{\pi}{6} \text{ radians} \right)$ in standard position. The terminal arm has a length of 1 unit.

An equilateral triangle (congruent to the one in b)) is drawn whose equal sides are 1 unit. A horizontal altitude is drawn which divides the equilateral triangle into two congruent triangles.

Complete:

 $\sin 30^\circ = \qquad \cos 30^\circ = \qquad \tan 30^\circ =$

$$\sin \frac{\pi}{6} = \qquad \cos \frac{\pi}{6} = \qquad \tan \frac{\pi}{6} =$$

Special Triangles

The following triangles were developed in the investigation.

- $\frac{1}{\frac{\sqrt{3}}{2}}$
- **a**) Complete the following table.

	θ	30°	45°	60°
	θ	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
s	in $ heta$			
c	osθ			
t	an θ			

Diagram 3

. 30°

- **b**) If in each triangle the horizontal distance is *x*, the vertical distance is *y*, and the hypotenuse is 1, express the following trigonometric ratios in terms of *x* and/or *y*.
 - i) sine ratio
 - ii) cosine ratio
 - iii) tangent ratio

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

The Unit Circle

(=)

The **unit circle** can be formed by reflecting the above diagram in the *x*-axis, in the *y*-axis, and in both the *x*-axis and the *y*-axis.

The circle above, with a radius of one unit, is called the **unit circle** and it is important to understand how it works.

Recall the formulas $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{y}{x}$, and $\cot \theta = \frac{x}{y}$.

- In the unit circle, where r = 1, we have: $\sin \theta = \underline{\quad \quad }$ and $\cos \theta = \underline{\quad \quad \quad }$
- Every point on the unit circle has coordinates (x, y) which can be written as $(\cos \theta, \sin \theta)$

•
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 • $\cot \theta = \frac{\cos \theta}{\sin \theta}$

