c) Diagram 3 shows an angle of 30° (or $\frac{\pi}{6}$ radians) in standard position. The terminal arm has a length of 1 unit.

An equilateral triangle (congruent to the one in b)) is drawn whose equal sides are 1 unit. A horizontal altitude is drawn which divides the equilateral triangle into two congruent triangles.

Complete:

$$
\begin{array}{lll}
\sin 30^{\circ}= & \cos 30^{\circ}= & \tan 30^{\circ}= \\
\sin \frac{\pi}{6}= & \cos \frac{\pi}{6}= & \tan \frac{\pi}{6}=
\end{array}
$$

Special Triangles

The following triangles were developed in the investigation.

a) Complete the following table.

θ	30°	45°	60°
θ	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\sin \theta$			
$\cos \theta$			
$\tan \theta$			

b) If in each triangle the horizontal distance is x, the vertical distance is y, and the hypotenuse is 1 , express the following trigonometric ratios in terms of x and/or y.
i) sine ratio
ii) cosine ratio
iii) tangent ratio

The Unit Circle

$$
r=1
$$

The unit circle can be formed by reflecting the above diagram in the x-axis, in the y-axis, and in both the x-axis and the y-axis.

The circle above, with a radius of one unit, is called the unit circle and it is important to understand how it works.
Recall the formulas $\sin \theta=\frac{y}{r}, \cos \theta=\frac{x}{r}, \tan \theta=\frac{y}{x}$, and $\cot \theta=\frac{x}{y}$.

- In the unit circle, whee $r=1$, we have:

$$
\sin \theta=y \quad \text { and }
$$

$\cos \theta=$ \qquad

- Every point on the unit circle has coordinates (x, y) which can be written as $(\cos \theta, \sin \theta)$
- $\tan \theta=\frac{\sin \theta}{\cos \theta}$
- $\cot \theta=\frac{\cos \theta}{\sin \theta}$

Use the unit circle to find the exact value of all the trigonometric ratios for a rotation angle

$$
\begin{array}{ll}
\text { of } 300^{\circ} \text { Give each answer with a rational denominator. } \\
\sin 300^{\circ}=-\frac{\sqrt{3}}{2} & \cos 300^{\circ}=\frac{1}{2}
\end{array} \operatorname{tan~300^{\circ }=-\sqrt {3}\quad \text {ref}} \begin{array}{ll}
\csc 300^{\circ}=-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3} \sec 300^{\circ}=2 & \cot 300^{\circ}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}
\end{array}
$$

$$
\begin{gathered}
\text { ref } L=60^{\circ} \\
\text { in }
\end{gathered}
$$

Use the unit circle to find the exact value of
a) $\cos \frac{3 \pi}{4}=\frac{-\sqrt{2}}{2} \quad$ b) $\cot \frac{5 \pi}{3}=-\frac{\sqrt{3}}{3}$
c) $\tan 600^{\circ}=\sqrt{3}$
d) $\csc 3 \pi$

$$
\begin{array}{rr}
\text { nfL }=\frac{\pi}{3} & \text { reft }=60^{\circ} \\
\text { gid. } \pi & \text { rand. III }
\end{array}
$$

Use a calculator to determine, to four decimal places, the coordinates of the point on the unit circle that corresponds to a rotation of $\frac{2}{5} \pi . \quad\left(\cos \frac{2 \pi}{5}, \sin \frac{2 \pi}{3}\right)$

$$
=(0.3090,0.9511
$$

$P\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ and $Q\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ are two points on the unit circle. If an object rotates 165° counterclockwise from point P to point Q, through what angle has it rotated? Answer in degrees and in radians.

The point $A(-0.6157,-0.7880)$ lies on the unit circle. Determine the value of θ, where θ is the angle made by the positive x-axis and the line passing though A.

$$
\begin{aligned}
& \cos A=-0.6 / 57 \\
& \sin A=-0.780 \\
& \text { III } \quad \text { eft } A=\sin ^{-1}(-0.7880)=52^{\circ}
\end{aligned}
$$ rads

Convriaht © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

$$
\# 2-8,10,12
$$

$$
4
$$

