Exponential and Logarithmic Functions Lesson \#6: Laws of Logarithms

Investigating the Product Law
a) Evaluate the following.
b) Evaluate the following.
i) $\log _{2} 16+\log _{2} 8=4+3=7$
i) $\log _{3} 27+\log _{3} 3=3+1$
ii) $\log _{2}[(16)(8)]=\log _{2} 128=7$
ii) $\log _{3}[(27)(3)]=\log _{3} 81=4$
c) Comment on the answers from a) and b).
same.

Investigating the Quotient Law
a) Evaluate the following.
b) Evaluate the following.
i) $\log _{2} 16-\log _{2} 8=4-3=1$
i) $\log _{3} 27-\log _{3} 3=3-1=2$
ii) $\log _{2} \frac{16}{8}=\log _{2} 2=0$
ii) $\log _{3} \frac{27}{3}=\log _{3} 9=2$
c) Comment on the answers from a) and b).

Product and Quotient Laws of Logarithms

The above investigations are examples of the following laws.

$$
\begin{array}{lc}
\log _{a}(M \times N)=\log _{a} M+\log _{a} N & \text { The Product Law } \\
\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N & \text { The Quotient Law }
\end{array}
$$

baves must
bethe same
a) $\log _{2} 12-\log _{2} 3$
b)

$$
\text { b) } \log _{6} 9+\log _{6} 8-\log _{6} 22(f)=\log _{6} 36=2
$$

b) Evaluate a) if $x=5$.

$$
\log _{5} 125=3
$$

a) Use the laws of \log arithms to write $\log _{b} 2+\log _{b} 3-\log _{b} 6-\log _{b} 8$ as a single logarithm.

$$
\log _{b}\left(\frac{2.3}{6 \cdot 8}\right)=\log _{b}\left(\frac{1}{8}\right)
$$

b) Evaluate a) if $b=2$.

$$
\log _{2}\left(\frac{1}{8}\right)=[-3
$$

The expression $\log _{2} x+\log _{2} 2 x-\log _{2} x^{2}-\log _{2} y$ is equivalent to
A. $2+\log _{2} y$
B. $1+\log _{2} y$
C. $2-\log _{2} y$
D. $1-\log _{2} y$

$$
\log _{2} x+\log _{2} 2 x-\log _{2} x^{2}-\log _{2} y
$$

$$
\log _{2}\left(\frac{2 x}{x y}\right)=\log _{2}\left(\frac{2}{y}\right)
$$

$$
\begin{array}{r}
=\log _{2} 2-\log _{2} y \\
1-\log _{2} y .
\end{array}
$$

Investigating the Power Law
a) By writing $2 \log x$ as $\log x+\log x$, show that $2 \log x=\log x^{2}$.

$$
2 \log x=\log x^{2} \quad \log x+\log x=\log x^{2}
$$

b) Prove that $3 \log _{2} a=\log _{2} a^{3}$.

$$
\log _{2} a+\log _{2} a+\log _{2} a=\log _{2} a^{3}
$$

c) Write an exprecsion equivalent to $a \log _{b} c$.

The above investigation is an example of the power law of logarithms.

$$
\log _{a} M^{n}=n \log _{a} M \quad \text { The Power Law }
$$

Class Ex. \#7 is an example of the following logarithmic identities:

$$
\log _{b} b^{n}=n \quad \text { and } \quad b^{\log _{b} n}=n
$$

These identities follow from the fact that the logarithmic and exponential functions are inverses.

Complete Assignment Questions \#5 - \#14

$$
\# 1-b(a, c, e \ldots)
$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

