
## **Exponential and Logarithmic Functions Lesson #6:** Laws of Logarithms



Product and Quotient Laws of Logarithms

The above investigations are examples of the following laws.



Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

200 Exponential and Logarithmic Functions Lesson #6: Laws of Logarithms



a) Use the laws of logarithms to write  $\log_x 10 + \log_x 75 - (\log_x 2 + \log_x 3)$ as a single logarithm.

log × 10 + log × 75 - log × 2 - log × 5 log × (750) = lug × 125

**b**) Evaluate a) if x = 5.

$$\log_{c}/25 = 3$$



**a**) Use the laws of logarithms to write  $\log_b 2 + \log_b 3 - \log_b 6 - \log_b 8$  as a single logarithm.

$$\log_{10}\left(\frac{2\cdot 3}{6\cdot 8}\right) = \log_{10}\left(\frac{1}{8}\right)$$

**b**) Evaluate a) if b = 2.

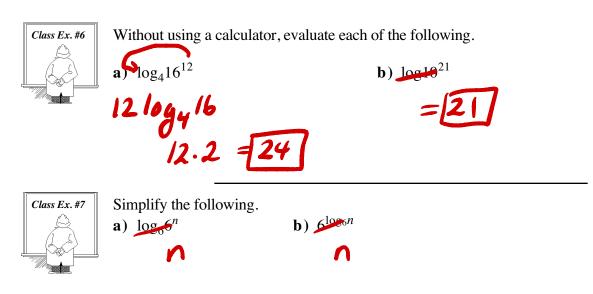
 $\log_2(\frac{1}{r}) = -3$ 

The expression  $\log_2 x + \log_2 2x - \log_2 x^2 - \log_2 y$  is equivalent to Class Ex. #4 log × +log 2× -log × -log y Α.  $2 + \log_2 y$ **B**.  $1 + \log_2 y$  $\log_2\left(\frac{2\chi}{\chi}\right)$  $= \log_2 \left( \frac{2}{3} \right)$ С.  $2 - \log_2 y$ D.  $1 - \log_2 y$  $= \log_2 2 - \log_2 2$ Class Ex. #5 Determine the value of  $3 \log_2 p - 3 \log_2 q$  if  $\frac{p}{q} = 8$ . 3 ( log\_p ~ log\_g )  $= 3\log_2 8 = 3.3$ (log2(2)) Complete Assignment Questions #1 - #4 Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

## Investigating the Power Law

**a**) By writing  $2 \log x$  as  $\log x + \log x$ , show that  $2 \log x = \log x^2$ .

**b**) Prove that  $3 \log_2 a = \log_2 a^3$ .


$$\log_2 \alpha + \log_2 \alpha + \log_2 \alpha = \log_2 \alpha^3$$

c) Write an expression equivalent to  $a \log_b c$ .

The Power Law of Logarithms

The above investigation is an example of the power law of logarithms.

| $\log_a M^n = n \log_a M$ The Power Law | $= n \log_a M$ The Power Law |
|-----------------------------------------|------------------------------|
|-----------------------------------------|------------------------------|





inverses.

Class Ex. #7 is an example of the following logarithmic identities:

 $\log_b b^n = n$  and  $b^{\log_b n} = n$ 

These identities follow from the fact that the logarithmic and exponential functions are

**Complete Assignment Questions #5 - #14** 

#1-6(a,c,e...)

 $\textit{Copyright } \texttt{$\bigcirc$} \textit{ by Absolute Value Publications. This book is \textbf{NOT} covered by the Cancopy agreement. }$