Exponential and Logarithmic Functions Lesson \#7: Combining the Laws of Logarithms

Review

In the previous lesson we learned three laws of logarithms.
The Product Law $\quad \log _{a}(M \times N)=\log _{a} M+\log _{a} N$
The Quotient Law $\quad \log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$
The Power Law

$$
\log _{a} M^{n}=n \log _{a} M
$$

In this lesson we will study examples which combine the Power Law with the Product and Quotient Laws.

Recall Class Ex. \#5 from Lesson 6 shown below.
"Determine the value of $3 \log _{2} p-3 \log _{2} q$ if $\frac{p}{q}=8$."
Show how this problem can be solved using a combination of the Laws of Logarithms without removing a common factor.

a) Use laws of logarithms to write $\frac{1}{2} \log _{a} 16-\frac{1}{3} \log _{a} 8$ as a single logarithm.

$$
\begin{aligned}
& =\log _{a} 16^{\frac{1}{2}}-\log _{a} 8^{\frac{1}{3}} \\
& =\log _{a} 4-\log _{a} 2 \\
& =\log _{a}\left(\frac{4}{2}\right)=\log _{a} 2
\end{aligned}
$$

b) Evaluate a) if $a=32$.

$$
\begin{array}{llll}
\log _{32} 2
\end{array} \quad \begin{array}{lll}
& & \\
& 32^{v} & =2
\end{array} \quad \frac{5 V}{5}=\frac{1}{5} .
$$

b) $2 \log 5+2 \log 2$

$$
=9-16=-7
$$

Write the following expression as a single logarithm.

$$
\begin{aligned}
& \log B+\log D-5 \log E-\log A^{2}+\frac{1}{2} \log A \\
&-\log E^{5} \\
&+\log A^{\frac{1}{2}}
\end{aligned}
$$

$$
\log \left(\frac{A^{\prime} B D}{E E^{\prime} A^{2}}\right)=\log \left(\frac{B D}{E A^{\prime}}\right)
$$

Complete Assignment Questions \#1- \#11

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

