Exponential and Logarithmic Functions Lesson #8: Graphing Logarithmic Functions

Exploring the Value of b in $y = \log_b x$

We will investigate how changing the value of b affects the graph of $y = \log_b x$. Notice that every graph of this form must pass through the point (1,0) because $\log_b 1 = 0$.

The graph of $y = \log_3 x$ is shown. The graph passes through the point (3, 1) because $\log_3 3 = 1$.

a) In each of the following, complete the statement and sketch the graph on the grid. Use a graphing calculator with window format x:[-1, 11, 1] y:[-4, 4, 1].

b) Without using a graphing calculator, make a sketch of the graphs of the following and verify with a graphing calculator.

 $\mathbf{i)} \quad y = \log_5 x$

ii) $y = \log_{\frac{1}{5}} x$

c) Complete the table.

Function	D	Domain			Range			<i>x</i> -int		int	Asymptote		x-value when $y = 1$
$y = \log_3 x$	x>O			y = 1			(1,0)		AM		X=0		3
$y = \log_{10} x$				•		1		Ĺ					10
$y = \log_{\frac{1}{3}} x$													-In
$y = \log_{\frac{1}{10}} x$					/.								01
$y = \log_b x$				V	V			/				7	h

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

- 214 Exponential and Logarithmic Functions Lesson #8: Graphing Logarithmic Functions
 - **d**) How do the graphs of $y = \log_3 x$ and $\log_1 x$ compare with each other?

reflections on the x-ax

e) How do the graphs of $y = \log_{10} x$ and $\log_{11} x$ compare with each other?

reflections on the xaxis.

f) Complete the following statement.

"The graph of $y = \log_1 x$ is ______ of the graph of $y = \log_h x$."

g) In the transformation unit, the replacement for reflection in the x-axis is $y \rightarrow -y$. Starting with $y = \log_b x$, make this replacement to determine the equation of the graph reflected in the *x*-axis. $y = \log_{10} x$

We now have two equations for the graph of $y = \log_b x$ reflected in the x-axis. Hence

- **a**) If $\log_4 x = 8$, state the value of $\log_{\frac{1}{4}} x$. $= -\log_{\frac{1}{4}} x$
- **b**) Prove the result in a) by converting to exponential form.

logy X = 5

 $f = -\log_{b} x$

216 Exponential and Logarithmic Functions Lesson #8: Graphing Logarithmic Functions

We use the knowledge learned in *Transformations* to compare the graph of $y = \log_c x$ to the graph of $y = a \log_c b(x - h) + k$. We use the letter *c* to represent the base of the logarithm to distinguish it from the letter *b* which is associated with the horizontal stretch.

