Exponential and Logarithmic Functions Lesson \#8: Graphing Logarithmic Functions

Exploring the Value of b in $y=\log _{b} x$

We will investigate how changing the value of b affects the graph of $y=\log _{b} x$.
Notice that every graph of this form must pass through the point $(1,0)$ because $\log _{b} 1=0$.
Part 1 The graph of $y=\log _{3} x$ is shown. The graph passes through the point $(3,1)$ because $\log _{3} 3=1$.
a) In each of the following, complete the statement and sketch the graph on the grid.

Use a graphing calculator with window format $x:[-1,11,1] \quad y:[-4,4,1]$.
i) $y=\log _{10} x$ passes through (/0, 1).
ii) $y=\log _{\underline{1}} x$ passes through $\left(\frac{1}{3}, 1\right)$.
iii) $y=\log _{\underline{1}} x$ passes

b) Without using a graphing calculator, make a sketch of the graphs of the following and verify with a graphing calculator.
i) $y=\log _{5} x$
ii) $y=\log _{\frac{1}{5}} x$
c) Complete the table.

Function	Domain	Range	x-int	y-int	Asymptote	x-value when $y=1$
$y=\log _{3} x$	$x>0$	$y=1 R$	$(1,0)$	1002	$X=0$	3
$y=\log _{10} x$						

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.
d) How do the graphs of $y=\log _{3} x$ and $\log _{\frac{1}{3}} x$ compare with each other?

reflections on the x-axis

e) How do the graphs of $y=\log _{10} x$ and $\log _{\frac{1}{10}} x$ compare with each other?

reflections on the x axis.

f) Complete the following statement.
"The graph of $y=\log _{\frac{1}{b}} x$ is refuchínan far x dit the graph of $y=\log _{b} x$."
g) In the transformation unit, the replacement for reflection in the x-axis is $y \rightarrow-y$.

Starting with $y=\log _{b} x$, make this replacement to determine the equation of the graph reflected in the x-axis.

We now have two equations for the graph of $y=\log _{b} x$ reflected in the x-axis. Hence

a) If $\log _{4} x=8$, state the value of $\log _{\frac{1}{4}} x=-\log _{4} x=-8$
b) Prove the result in a) by converting to exponential form.

$-v=f$

Part 2 The partial graphs of $y=\log _{2} x, y=\log _{4} x$, and $y=\log _{8} x$ are shown.

a) Complete the following statements.
i) $y=\log _{2} x$ passes through $(8,3)$.
ii) $y=\log _{4} x$ passes through $\left(8, \frac{3}{2}\right)$.
iii) $y=\log _{8} x$ passes through $(8, \mathbf{I})$.
b) The graph of $y=\log _{4} x$ is a vertical stretch of the graph of $y{ }_{\Gamma} \log _{2} x$ about the x-axis. State the stretch factor and complete the statement $\log _{4} x=\frac{1}{2} \log _{2} x$.
c) The graph of $y=\log _{8} x$ is a vertical stretch of the graph of $y=\log _{2} x$ about the x-axis. State the stretch factor and complete the statement $\log _{8} x=\frac{1}{3} \log _{2} x$.
d) i) Use the results above to determine the transformation which would map the graph of $y=\log _{2} x$ to the graph of $y=\log _{64} x .=\frac{1}{6} \log _{2} x$
ii) Complete the statement $\log _{64} x=\frac{1}{6} \log _{2} x . \quad \log _{64} x=\log _{2} x=\frac{1}{6} \log _{2} x$
above is an example of the general rule.

The above is an example of the general rule.

$$
\log _{64} x=\log _{2} x=\frac{1}{6} \log _{2} x
$$

The transformation which maps $y=\log _{b} x$ to $y=\log _{b^{n}} x$ is a vertical stretch about the x-axis by a factor of $\frac{1}{n}$, so $\log _{b^{n}} x=\frac{1}{n} \log _{b} x$

a) Describe the transformation which would map the graph of
i) $y=\log _{3} x$ to the graph of $y=\log _{81} x$ ii) $y=\log _{16} x$ to the graph of $y=\log _{4} x$

b) Complete the of statements:
i) $\log _{81} x=\frac{1}{4} \log _{3} x$
ii) $\log _{4} x=2 \log _{16} x$
$\log _{3^{4}} x$

a) If $\log _{5} x=6$, state the value of $\log _{125} x=\log _{5} x=\frac{1}{3} \log _{5} x$
b) Prove the result in a) by converting to exponential form.

$$
=\frac{1}{3}(6)=2
$$

$$
\begin{aligned}
\log _{5} x & =6 & \log _{125} x & =v \\
x & =5^{6} & 125^{v} & =5^{6}
\end{aligned}
$$

Complete Assignment Questions \#1-\#5

$$
\begin{aligned}
& 5^{3 v}=5^{6} \\
& 3 v=6 \Rightarrow v=2
\end{aligned}
$$

Further Transformations of Logarithmic Functions
We use the knowledge learned in Transformations to compare the graph of $y=\log _{c} x$ to the graph of $y=a \log _{c} b(x-h)+k$. We use the letter c to represent the base of the logarithm to distinguish it from the letter b which is associated with the horizontal stretch.

The graph of $y=\log _{3} x$ is shown.

a) Write the transformation associated with each of the following and sketch the graph on the grid.
i) $y=2 \log _{3} x$
vie by a $\rightarrow \frac{1}{2} y$ act root 2
ii) $y=\log _{3}(x-2)$

$$
\begin{aligned}
& x \rightarrow x-2 \\
& \text { hit. } 2 \text { nits } \\
& \text { right }
\end{aligned}
$$

iii) $y=\log _{3} x-2$
$y \rightarrow y+2$ vat. 2 units dawes.
b) Do any of the above transformations result in a change in the original domain or range?
c) State the equation of the asymptote for each part of a).

