Applications of Exponential and Logarithmic Functions Lesson #1: Solving Exponential Equations

Overview

In this unit, we will learn how to solve exponential and logarithmic equations and apply this to real life problems involving exponential growth and decay, including compound interest, loans, investments, half-life, etc. We will also solve problems involving logarithmic scales, such as the Richter scale, the pH scale, and the Bell scale.

Review Solving Exponential Equations with a Common Base

In the last unit we solved exponential equations involving a common base. Solve the following exponential equations by converting to a common base.

Consider the exponential equation $2^x = 50$.

a) Explain why the solution cannot be determined by the above method.

No ration Common

- b) i) Determine, by considering powers of 2, the two integers between which the solution must lie. $2^5 = 32$ $5.672^6 = 64$
 - ii) Estimate the solution to the nearest tenth.
- c) The equation $2^x = 50$ can be solved by taking the logarithm (base 10) of each side and solving the resulting equation.

Complete the work started below and give

i) the exact solution and, ii) an approximation to the nearest tenth.

Copyright © by Absolute Value Publicatic Is. This book is **NOT** covered by the Cancopy agreement.

Class Ex. #1 Solve	the following equations, express	sing the solution	
i)	as an exact value in the form $\frac{\log_2}{\log_2}$	$\frac{g}{g}\frac{M}{N}$ ii) to three decimal	places
$a) 4^{x}$	^x = 12	b) $8^x + 4 = 40$	
log	12 = x	8 × = 36	
K :	= 109 12 108 4 ≈ 1.792	$ \begin{array}{c} \log 36 = x \\ \Im_{2} \\ \int \log 36 \\ x = \int \log 8 \\ \int \log 8 \\ \end{array} $	≈1.723
Common los	$3^{3x} = 3^{2x}$	d) $2(3)^{x-2} = 7^x$	- lo 7×
it both log			-2 7×
3× log	$6 = (2x-1)\log 3$	$\log 2 + \log 3$	
3x 10	$6 = 2 \times \log 3 - \log 3$	$1_{0}^{2} + (x - x)^{2}$	$2)\log S = \times \log +$
shall 3x/00	$6 - 2 \times \log 3 = -\log 1$	3	
"x" x (3/00	(-210,3) = -10	9, 3	
3106	-21-3 3/0	6-2103	
7	$x = \frac{\log 3^{-1}}{\log 6^{2} - \log 3^{2}} =$	100 (1) ≈ -0.	346
Class Ex. #2 In sin	nple cases, such as $2^x = 50$ or 4	$4^x = 12$, the equation can als	o be solved by converting
to log	arithmic form. For example 2	$x = 50 \implies x = \log_2 50 = \frac{\log_2 50}{\log_2 50}$	$\frac{\log 50}{\log 2}$.

Solve $4^x = 12$ by converting to logarithmic form.

According to Statistics Canada, in the 21st century, Canada's population has been growing at an average annual rate of 1.0%. The exponential equation $P = P_o(1.01)^n$ can be used to predict the population, *P*, *n* years after a known population P_o . (http://www.statcan.gc.ca/pub/91-003-x/2007001/4129907-eng.htm)

If the Canadian population at the beginning of 2001 was approximately 30 million, estimate in which year the Canadian population will reach 50 million assuming the same average annual rate of growth.

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.