Exponential and Logarithmic Functions Lesson \#2: Solving Exponential Equations with a Common Base

Review

Simplify $\left(9^{2 x+3} \div 27^{3 x-1}\right) \times 81^{x-1}$ by converting each term to a common base.

Solving Exponential Equations with a Common Base

An exponential equation is an equation where the variable is in the exponent.
Use the following procedure to solve an equation where the variable is in the exponent.

- Write each side of the equation in the same base.
- If necessary, use exponent laws so that each side of the equation contains only one base.
- Equate the exponents on each side of the equation.
- Determine the value of the variable.

Solve the following exponential equations.
a) $5^{2 x+3}=5^{7}$
b) $7^{x-2}=343$
$2 x+3=7$

c) $3^{5 x-1}=81^{3 x}$
d) $3^{x}=27 \sqrt{3}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

A bacterium triples every six days. The number of bacteria n, present after x days, is given by the formula $n=3^{\frac{x}{6}}$. After how many days are there 243 bacteria?

$$
\begin{aligned}
& 243=3^{\frac{x}{6}} \\
& \left.6 \cdot \frac{3}{}_{5}^{5}=\frac{3^{\frac{x}{6}}}{}=\frac{x}{a}\right] \quad x=30
\end{aligned}
$$

Class Ex. \#3
 Solve the following exponential equations by converting each side to a common base.

a) $27^{x-2}=\frac{1}{81^{x+3}}$
b) $\left(\frac{125}{216}\right)^{\frac{-x}{4}}=\left(\frac{6}{5}\right)^{3 x-3}$

$$
\begin{aligned}
& \left(3^{3}\right)^{x-2}=\left(3^{-4}\right)^{x+3} \\
& 3^{3 x-6}=3^{-4 x-12}
\end{aligned}
$$

$$
3 x-6=-4 x-12
$$

Complete Assignment Questions \#1-\#12

Assignment

1. Simplify.
a) $49^{x-1} \times 7^{2 x-3}$
b) $216^{x} \div\left(1296^{5 x-4} \times 36^{x+5}\right)$
