Exponential Function

The explorations on the previous page are examples of exponential functions. An exponential function is a function whose equation is of the form

to f cycles
$y=a b^{x} \quad$ where $a \neq 0, b>0, b \neq 1, x \in R$

Comparing the Graphs $y=2^{x}$ and $y=\left(\frac{1}{2}\right)^{x}$

b) Sketch the graph of the exponential function with equation $y=2^{x}, x \in R$, using the table of values and

a) State the values of a and b for $y=2^{x}$ and $y=\left(\frac{1}{2}\right)^{x}$.

c) \$ketch the graph of the exponential function with equation $y=\left(\frac{1}{2}\right)^{x}, x \in R$, using the table of values
 and grid.

\boldsymbol{x}	-3	-2	-1	0	1	2	3	4
\boldsymbol{y}	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$

d) An asymptote is a line whose distance from a given curve gets closer and closer to zero. In the above graphs, the x-axis is a horizontal asymptote. Complete the following chart .

Equation of Function	Domain of Function	Range of Function	x-intercept of Graph	-intercept of Graph	Equations) of Asymptotes
$y=2^{x}$	$x=1 R$	$y>0$	none	$(0,1)$	$y=0$
$y=\left(\frac{1}{2}\right)^{x}$	$x=1 R$	$y>0$	$n 0 \wedge 2$	$(0,1)$	$y=0$

e) Complete the following statements using the words "growth" or "decay".

- $f(x)=2^{x}$ is an example of a grow th function.
- $f(x)=\left(\frac{1}{2}\right)^{x}$ is an example of a decay... function.

Exploring the Value of bin $y=a b^{x}$, where $a=1$

a) By using a graphing calculator or other technology, sketch the exp onential functions with equation:
(i) $y=3^{x}$

(ii) $y=10^{x}$
(iii) $y=\left(\frac{1}{3}\right)^{x}$

(iv) $y=\left(\frac{1}{10}\right)^{x}$

b) The value of b affects the steepness of the graph as x increases. Complete the following.

- When $b>1$, the curve cisef more sharply as b increases.
- When $0<b<1$, the curve \qquad falls more sharply as b decreases.
c) Without using a graphing calculator, make a sketch of the graphs of:
i) $y=5^{x}$
ii) $y=(0.2)^{x}$

$$
y=\left(\frac{1}{5}\right)^{x}
$$

d) Verify the solution in c) using a graphing calculator.
e) State the x-intercept for each of the graphs of the form $y=b^{x}$.
nore
f) State the y-intercept for each of the graphs of the form $y=b^{x}$.

$$
y=1
$$

g) State the domain for each of the graphs of the form $y=b^{x}$.

$$
x=10
$$

h) State the range for each of the graphs of the form $y=b^{x}$.

$$
y>0
$$

i) State the equation of the horizontal asymptote for each of the graphs of the form $y=b^{x}$.

$$
y=0
$$

Characteristics of the Graph of the Exponential Function $f(x)=a b^{x}$

The following summarizes the basic characteristics of the graph of the exponential function with equation $y=a b^{x}$.

Use the information from the previous explorations to complete the following.

- The y-intercept is \qquad .
- There is \qquad x-intercept.
- The x-axis is a \qquad .
- The domain is \qquad .
- The range is \qquad .
- For $a>0$,
- When $b>1$, the function represents a \qquad function.
- When \qquad , the function represents a decay function .
- The value of b affects the steepness of the graph as x increases.
- When $b>1$, the curve \qquad sharply as b increases.
- When $0<b<1$, the curve \qquad sharply as b decreases.
- The value of a affects the vertical stretch of the graph. Choose the correct alternative.
- When $a>1$, the stretch is an) (expansion / compression).
- When $0<a<1$, the stretch is an) (expansion / compression).
- When $a<0$, there is also a reflection in the (x-axis / y-axis).

Describe how the graph of the second function compares to the graph of the first function.
a) $y=4^{x}, y=2(4)^{x-2}$
b) $y=2^{x}, y+4=-2^{\frac{x}{5}}$

Explain, using transformations, why the graph of $y=\left(\frac{1}{3}\right)^{x}$ is a reflection in the y-axis of the graph of $y=3^{x}$.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Consider the function $f(x)=4^{x+2}-6$. Without using a graphing calculator, determine
a) the domain and range of the function

$$
x \rightarrow x+2
$$

$$
\text { hh+2 } \mathrm{h}+2 \text { vats left }
$$

b) the y-intercept of the graph of the function

$$
\begin{aligned}
& \text { let } x=0 \\
& y \text {-int }=(0,10) \\
& \text { equations) of any asymptotes of th }
\end{aligned}
$$

$$
y \rightarrow y+6 \text { v.t. } 6 \text { pails }
$$

c) the equation (s) of any asymptotes of the graph of the function

$$
\text { horitatel asymptote at } y=-6
$$

Complete Assignment Questions \#1- \#11

Assignment

1. State the x and y-intercepts for the graphs of the following:
a) $f(x)=2^{x}$
b) $f(x)=(2) 10^{x}$
c) $f(x)=2^{10 x}$
d) $y=\left(-\frac{1}{2}\right)\left(\frac{3}{5}\right)^{x}$
2. a) State the domain and range of the function $f(x)=a b^{x}, a, b>0, x \in R$.
b) Which of the following transformations applied to the graph of $y=a b^{x}, a, b>0, x \in R$, would result in a change to the domain of the function?
i) horizontal stretch about the y-axis
ii) vertical stretch about the x-axis
iii) horizontal translation
iv) reflection in the x-axis
v) reflection in the y-axis
vi) reflection in the line $y=x$
c) Which of the above transformations applied to the graph of $y=a b^{x}, a, b>0, x \in R$, would result in a change to the range of the function?
