Exponential Function

The explorations on the previous page are examples of **exponential functions**. An **exponential function** is a function whose equation is of the form

d) An asymptote is a line whose distance from a given curve gets closer and closer to zero. In the above graphs, the *x*-axis is a horizontal asymptote. Complete the following chart.

Equation of Function	Domain of Function	Range of Function	x-intercept of Graph	y-intercept of Graph	Equation(s) of Asymptotes
$y = 2^x$	x=IR	<u>ک</u> ک	none	(0,1)	y=0
$y = \left(\frac{1}{2}\right)^x$	x=1R	y>0	none	(0,1)	y=0

e) Complete the following statements using the words "growth" or "decay".

•
$$f(x) = 2^x$$
 is an example of a ______ function.
• $f(x) = \left(\frac{1}{2}\right)^x$ is an example of a ______ function.

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

Characteristics of the Graph of the Exponential Function $f(x) = ab^x$

The following summarizes the basic characteristics of the graph of the exponential function with equation $y = ab^x$.

Use the information from the previous explorations to complete the following.

- The *y*-intercept is _____. There is _____*x*-intercept.
- The *x*-axis is a ______.
- The domain is ______.
- The range is ______.
- For a > 0,
 - When b > 1, the function represents a ______ function.
 - When _____, the function represents a decay function .
- The value of *b* affects the steepness of the graph as *x* increases.
 - When b > 1, the curve ______ sharply as *b* increases.
 - When 0 < b < 1, the curve ______ sharply as *b* decreases.
- The value of *a* affects the vertical stretch of the graph. Choose the correct alternative.
 - When a > 1, the stretch is a(n) (expansion / compression).
 - When 0 < a < 1, the stretch is a(n) (expansion / compression).
 - When a < 0, there is also a reflection in the (x-axis / y-axis).

Class Ex. #1 Describe how the graph of the second function compares to the graph of the first function.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Assignment

1. State the *x* and *y*-intercepts for the graphs of the following:

a) $f(x) = 2^x$ **b**) $f(x) = (2)10^x$ **c**) $f(x) = 2^{10x}$ **d**) $y = \left(-\frac{1}{2}\right) \left(\frac{3}{5}\right)^x$

- **2.** a) State the domain and range of the function $f(x) = ab^x$, $a, b > 0, x \in R$.
 - **b**) Which of the following transformations applied to the graph of $y = ab^x$, $a, b > 0, x \in R$, would result in a change to the **domain** of the function?

i)	horizontal stretch about the y-axis	ii)	vertical stretch about the x-axis

- iii) horizontal translation iv) reflection in the *x*-axis
- **v**) reflection in the *y*-axis **vi**) reflection in the line y = x
- c) Which of the above transformations applied to the graph of $y = ab^x$, $a, b > 0, x \in R$, would result in a change to the **range** of the function?