# **Exponential and Logarithmic Functions Lesson #4:** Logarithmic Functions

Exploring the Inverse of an Exponential Function

In this example we will consider the exponential function  $y = 2^x$ .

Part 1

#### Exploring the Inverse of $y = 2^x$ Algebraically

To find the inverse of a function algebraically, we must switch *x* and *y* and then solve for *y*.

- **a**) Attempt to determine the inverse of  $y = 2^x$  algebraically.
- **b**) What difficulty did you encounter?

we den't Know hav to solve.

At this stage we are unable to write the inverse of  $y = 2^x$  in terms of y.

Part 2

#### Exploring the Inverse of $y = 2^x$ Graphically

To determine the inverse of  $y = 2^x$  graphically, we switch the *x* and *y*-coordinates of each point on the graph to produce the graph of  $x = 2^y$ .

a) Complete the tables below and sketch the graphs of  $y = 2^x$  and  $x = 2^y$  on the grid.



**b**) State the equation of the line of symmetry of the completed graphs.

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.



 $y = 2^x$  is the exponential function with base 2. The inverse of this function,  $x = 2^y$ , is also a function, but we are unable to write its equation in terms of y.

To do this, we introduce a new function, called the logarithmic function.

### Logarithmic Function

A logarithmic function is the inverse of an exponential function.

The inverse of the exponential function with base 2, i.e.  $y = 2^x$ ,

is the logarithmic function with base 2, written as  $y = \log_2 x$ .

Note that the graph of  $y = \log_2 x$  is the same as the graph of  $x = 2^y$ .

 $x = 2^y \iff y = \log_2 x$ 

In general, we write  $y = \log_b x$  rather than  $x = b^y$  to express the inverse of  $y = b^x$ .

The logarithmic function with base *b* has the equation

 $y = \log_b x$ , x > 0,  $x \in R$ , b > 0 and  $b \neq 1$ 



- The inside of the logarithm, in this case *x*, is called the **argument** of the logarithm.
- The argument can never be negative.







The graphs of  $y = 2^x$  and  $x = 2^y$  are shown.

- **a**) Write the label " $y = \log_2 x$ " beside the appropriate graph on the grid.
- **b**) Complete the table below.



|              | Function       | Domain | Range | x-intercept | y-intercept | Asymptote |
|--------------|----------------|--------|-------|-------------|-------------|-----------|
| exponstial y | $y = 2^x$      | x=IR   | y >0  | none        | (31)        | 7=0       |
| ogarithmic y | $y = \log_2 x$ | × >0   | y =1R | (1,0)       | none        | X=0       |

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.



The tables below show the coordinates of points on the graphs of  $y = 2^x$  and  $y = \log_2 x$ .

| Graph of $y = 2^x$ |     |        |       |   |   |   |   |    |
|--------------------|-----|--------|-------|---|---|---|---|----|
| x                  | -3  | -2     | -1    | 0 | 1 | 2 | 3 | 4  |
| у                  | 1 8 | 1<br>4 | 1   N | 1 | R | 4 | 8 | 16 |

| x | 1<br>8 | 1<br>4 | 1   Q | 1 | Я | 4 | 8 | 16 |
|---|--------|--------|-------|---|---|---|---|----|
| y | -3     | -2     | -1    | 0 | 1 | 2 | 3 | 4  |

Graph of  $y = \log_2 x$ 

Notice that

- the point (3, 8) on the graph of  $y = 2^x$  indicates that  $8 = 2^3$
- the point (8, 3) on the graph of  $y = \log_2 x$  indicates that  $3 = \log_2 8$
- **a**) What statement can be made from the point  $\left(-2, \frac{1}{4}\right)$  on the graph of  $y = 2^{x}$ ?
- **b**) What statement can be made from the point (16, 4) on the graph of  $y = \log_2 x$ ?
- c) Complete the table below showing statements in exponential form and logarithmic form.

| Logarithmic Form        | <b>Exponential Form</b> | Logarithmic Form                      | <b>Exponential Form</b> |
|-------------------------|-------------------------|---------------------------------------|-------------------------|
| $\log_2 8 = 3$          | $8 = 2^3$               | $\log_2 \frac{1}{8} = -3$             | $\frac{1}{8} = 2^{-3}$  |
| $\log_2 4 = 2$          | 4 = 2 <sup>2</sup>      | log_ (4)=-2                           | $\frac{1}{4} = 2^{-2}$  |
| $\log_2 2 =$            | 2 = 2'                  | $\log_2\left(\frac{1}{2}\right) = -1$ | $\frac{1}{2} = 2^{-1}$  |
| $\log_2 1 = \mathbf{O}$ | l = 2°                  |                                       |                         |



a) Use patterns developed from Class Ex. #2 to write the exponential statement  $10^3 = 1000$  in logarithmic form.



**b**) Use patterns developed from Class Ex. #2 to write the logarithmic statement  $\log_5 625 = 4$  in exponential form.



### Characteristics of the Graph of the Logarithmic Function $y = \log_b x$

- The *x* intercept is 1.
- There is no *y*-intercept.
- The *y*-axis is a vertical asymptote with equation x = 0.
- Domain =  $\{x \mid x > 0, x \in R\}$ .
- Range =  $\{y \mid y \in R\}$ .
- $y = \log_b x$  is equivalent to  $x = b^y$ , where x > 0 and  $b > 0, b \neq 1$ .
- *b* is the base of both the logarithmic function and the exponential function.



- Since the logarithmic function  $y = \log_b x$  is only defined for positive values of x, the logarithm of a negative number cannot be determined.
- The logarithmic equation  $y = \log_b x$  can be expressed in exponential form as  $x = b^y$ .
- The exponential equation  $y = b^x$  can be expressed in logarithmic form as  $\log_b y = x$ .





## The Logarithmic Form of $y = ab^x$

We have seen how to change forms between the exponential form  $y = b^x$  and the logarithmic form  $\log_b y = x$ .

We now consider how to write the exponential form  $y = ab^x$  in logarithmic form.

This can be done using the following procedure:

- 1. Write the exponential form  $y = ab^x$  as  $\frac{y}{a} = b^x$ .
- 2. Change  $\frac{y}{a} = b^x$  to logarithmic form.

The logarithmic form of 
$$y = ab^x \left( \text{or } \frac{y}{a} = b^x \right)$$
 is \_\_\_\_\_\_.



Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.