Exponential and Logarithmic Functions Lesson \#4: Logarithmic Functions

Exploring the Inverse of an Exponential Function

In this example we will consider the exponential function $y=2^{x}$.

Part 1 Exploring the Inverse of $y=2^{x}$ Algebraically

To find the inverse of a function algebraically, we must switch x and y and then solve for y.
a) Attempt to determine the inverse of $y=2^{x}$ algebraically.

b) What difficulty did you encounter?

At this stage we are unable to write the inverse of $y=2^{x}$ in terms of y.

Part 2 Exploring the Inverse of $y=2^{x}$ Graphically

To determine the inverse of $y=2^{x}$ graphically, we switch the x and y-coordinates of each point on the graph to produce the graph of $x=2^{y}$.
a) Complete the tables below and sketch the graphs of $y=2^{x}$ and $x=2^{y}$ on the grid.
2^{x}

Graph of $\boldsymbol{y}=\mathbf{2}^{\boldsymbol{x}}$

Graph of $x=2^{y}$

b) State the equation of the line of symmetry of the completed graphs.

$y=2^{x}$ is the exponential function with base 2 . The inverse of this function, $x=2^{y}$, is also a function, but we are unable to write its equation in terms of y.

To do this, we introduce a new function, called the logarithmic function.

Logarithmic Function

A logarithmic function is the inverse of an exponential function.
The inverse of the exponential function with base 2, i.e. $y=2^{x}$, is the logarithmic function with base 2 , written as $y=\log _{2} x$.
Note that the graph of $y=\log _{2} x$ is the same as the graph of $x=2^{y}$.

$$
x=2^{y} \quad \Leftrightarrow \quad y=\log _{2} x
$$

In general, we write $y=\log _{b} x$ rather than $x=b^{y}$ to express the inverse of $y=b^{\mathrm{x}}$.

The logarithmic function with base b has the equation

$$
y=\log _{b} x, \quad x>0, x \in R, b>0 \text { and } b \neq 1
$$

The graphs of $y=2^{x}$ and $x=2^{y}$ are shown.
a) Write the label " $y=\log _{2} x$ " beside the appropriate graph on the grid.
b) Complete the table below.

Function	Domain	Range	x-intercept	y-intercept	Asymptote	
exponanial	$y=2^{x}$	$x=1 R$	$y>0$	none	$(0,1)$	$y=0$
	$y=\log _{2} x$	$x>0$	$y=1 R$	$(1,0)$	none	$x=0$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

The tables below show the coordinates of points on the graphs of $y=2^{x}$ and $y=\log _{2} x$.

Notice that

- the point $(3,8)$ on the graph of $y=2^{x}$ indicates that $8=2^{3}$
- the point $(8,3)$ on the graph of $y=\log _{2} x$ indicates that $3=\log _{2} 8$
a) What statement can be made from the point $\left(-2, \frac{1}{4}\right)$ on the graph of $y=2^{x}$?
b) What statement can be made from the point $(16,4)$ on the graph of $y=\log _{2} x$?
c) Complete the table below showing statements in exponential form and logarithmic form.

Logarithmic Form	Exponential Form	Logarithmic Form	Exponential Form	
$\log _{2} 8=3$	$8=2^{3}$	$\log _{2} \frac{1}{8}=-3$	$\frac{1}{8}=2^{-3}$	
$\log _{2} 4=2$	$4=2^{2}$	$\log _{2}\left(\frac{1}{8}\right)=-2$	$\frac{1}{4}=2^{-2}$	
$\log _{2} 2=1$	$2=2^{1}$	$\log _{2}\left(\frac{1}{2}\right)=-1$	$\frac{1}{2}=2^{-1}$	
$\log _{2} 1=0$	$1=2^{0}$			

a) Use patterns developed from Class Ex. \#2 to write the exponential statement $10^{3}=1000$ in logarithmic form.

$$
\log 1000=3
$$ in exponential form.

$$
5^{4}=625
$$

Characteristics of the Graph of the Logarithmic Function $\boldsymbol{y}=\log _{b} x$

- The x intercept is 1 .
- There is no y-intercept.
- The y-axis is a vertical asymptote with equation $x=0$.
- Domain $=\{x \mid x>0, x \in R\}$.
- Range $=\{y \mid y \in R\}$.
- $y=\log _{b} x$ is equivalent to $x=b^{y}$, where $x>0$ and $b>0, b \neq 1$.
- b is the base of both the logarithmic function and the exponential function.

- Since the logarithmic function $y=\log _{b} x$ is only defined for positive values of x, the logarithm of a negative number cannot be determined.
- The logarithmic equation $y=\log _{b} x$ can be expressed in exponential form as $x=b^{y}$.
- The exponential equation $y=b^{x}$ can be expressed in logarithmic form as $\log _{b} y=x$.

State the inverse of the following functions. Answer in the form $y=$ \qquad .
a) $y=\log _{3} x$
b) $y=8^{x}$

$$
x=\log _{3} y \quad y=3^{x}
$$

$\log _{8} x=$

Convert each of the following from logarithmic form to exponential form.
a) $\log _{7} x=4$
b) $\log _{5} 15=y$
c) $m=\log _{t} B$
d) $\frac{5}{4}=\frac{4 \log _{b} 6}{y}$
$x=7^{4}$
$S^{y}=15 \quad t^{m}=B$

Convert each of the following from exponential form to logarithmic form.
a) $4^{3}=64$
b) $2^{-3}=\frac{1}{8}$
c) $e^{d}=f$
d) $(2 x+4)=a^{5}$
$\log _{4} 64=3 \quad \log _{2} \frac{1}{8}=-3 \quad \log _{e} f=d \quad \log _{a}(2 x+4)=5$

Calculate the value of t if $\log _{2} x=3$ and $\log _{2} t=x$.

$$
\begin{array}{ll}
2^{3}=x & \log _{2} t=8 \\
x=8 & t=2^{8}=256
\end{array}
$$

Complete Assignment Questions \#1-\#7

The Logarithmic Form of $y=a b^{x}$

We have seen how to change forms between the exponential form $y=b^{x}$ and the logarithmic form $\log _{b} y=x$.
We now consider how to write the exponential form $y=a b^{x}$ in logarithmic form.
This can be done using the following procedure:

1. Write the exponential form $y=a b^{x}$ as $\frac{y}{a}=b^{x}$.
2. Change $\frac{y}{a}=b^{x}$ to logarithmic form.

The logarithmic form of $y=a b^{x}\left(\right.$ or $\left.\frac{y}{a}=b^{x}\right)$ is \qquad .

a) $\frac{y}{2}=\frac{2\left(3^{x}\right)}{2}$
b) $h=\frac{7(4)^{k}}{7}$
c) $\frac{t}{f} \frac{r(s)^{p}}{r}$
d) $y=\frac{\frac{3}{2}(10)^{x}}{3 / 2}$ $\frac{y}{2}=3^{x}$
$\log _{4}\left(\frac{h}{7}\right)=K \quad \log _{5}\left(\frac{t}{7}\right)=\rho^{3 / 2} \quad \log _{10}(2 / 3 y)=x$

Change each of the following from logarithmic form to exponential form $y=a b^{x}$.
a) $\log _{7}\left(\frac{y}{3}\right)=x$
b) $\log _{10}\left(\frac{y}{4}\right)=x$
c) $\log _{5}(7 y)=x$
d) $\log _{e}\left(\frac{y}{5}\right)=x$ $7^{x}=\frac{y}{3}$
$y=3(7)^{x}$

$5^{x}=7 y$
$e^{x}=\frac{y}{5}$
Complete Assignment Questions \#8 - \#15

