Transformations Lesson \#1: Horizontal and Vertical Translations - Part One

Translations

A translation is a transformation which slides each point of a figure the same distance in the same direction.

Comparing the Graphs of $y=f(x)$ and $y-k=f(x)[$ or $y=f(x)+k]$

Part 1

$$
K=3
$$

a) Complete the table of values. The first one has been completed.

$y=x^{2}$	
x	y
-3	$\mathbf{9}$
-2	$\mathbf{4}$
-1	$\mathbf{1}$
0	$\mathbf{0}$
1	$\mathbf{1}$
2	$\mathbf{4}$
3	$\mathbf{9}$

$y-3=x^{2}$

$$
y+3=x^{2} \quad K=-3
$$

x	y
-3	12
-2	7
-1	4
0	3
1	4
2	7
3	12

x	y
-3	6
-2	1
-1	-2
0	-3
1	-2
2	1
3	6

b) Use the table of values in a) to graph and label each of the functions on the grid.
c) In the second table, y has been replaced by $y-3$.

What is the effect of this replacement on the graph of $y=x^{2}$?
vert tres. up 3 units
d) In the third table, y has been replaced by $y+3$.

What is the effect of this replacement on the graph of $y=x^{2}$?
vert tran. dom 3 saith

$$
K=2
$$

a) Use a graphing calculator to graph the following functions:
i) $y=|x|$

iii) $y=|x|-3$

b) The equation $y=|x|+2$ can be rewritten as $y-2=|x|$. How does the replacement of y by $y-2$ affect the graph of $y=|x|$?

$$
\text { vet taus } 2 \operatorname{sun} 4 \mathrm{y}
$$

c) The equation $y=|x|-3$ can be rewritten as $y+3=|x|$.

How does the replacement of y by $y+3$ affect the graph of $y=|x|$?
d) Using the results of Parts 1 and 2, answer the following questions based on the graph of $y=f(x)$.
i) What is the effect of the parameter k on the graph of the function $y=f(x)+k$?
ll \square
ii) What is the effect of the parameter k on the graph of the function $y-k=f(x)$? Vertical trons.

- Compared to the graph of $y=f(x)$, the graph of $y-k=f(x)$ results in a vertical translation of k units.
- If $k>0$, the graph moves \qquad . If $k<0$, the graph moves down.

The notation $\boldsymbol{y}-\boldsymbol{k}=\boldsymbol{f}(\boldsymbol{x})$ is often used instead of $y=f(x)+k$ to emphasize that this is a transformation on y. The concept of replacing y by $y-k$ will be very important in this course.

Comparing the Graphs of $y=f(x)$ and $y=f(x-h)$

Part 1
a) Complete the table of values. The first one has been completed
i) $y=x^{2}$

x	y
-4	16
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9
4	16

ii) $y=(x-3)^{2}$ | x | y |
| :---: | :---: |
| -1 | 5 |
| 0 | 6 |
| 1 | 4 |
| 2 | 1 |
| 3 | 0 |
| 4 | 1 |
| 5 | 4 |
| 6 | 9 |
| 7 | 6 |

$$
\begin{array}{r}
h=-3 \\
x=(-3)
\end{array}
$$

iii) $y=(x+3)^{2}$

x	y
-7	16
-6	9
-5	4
-4	1
-3	0
-2	1
-1	4
0	6
1	6

horizontal

$$
h=3
$$

b) Use the table of values in a) to graph and label each of the functions on the same grid.
c) In the second table, x has been replaced by $x-3$.

What is the effect of this replacement on the graph of $y=x^{2}$?
d) In the third table, x has been replaced by $x+3$.

What is the effect of this replacement on the graph of $y=x^{2} ?$
hor taus. Suntans left

Part 2
a) Use a graphing calculator to graph the following functions, observing the effects of replacing x by $x-4$, and x by $x+2$.
$x \rightarrow x+2$
(i) $y=\sqrt{x}$
ii) $y=\sqrt{x-4}$
iii) $y=\sqrt{x+2}$
$h=4$
b) Based on the graph of $y=f(x)$, and using the results of Parts 1 and 2, describe the effect of the parameter h on the graph of the function $y=f(x-h)$. hor trons. by h vito
c) Complete the following statements:

- Compared to the graph of $y=f(x)$, the graph of $y=f(x-h)$ results in a horizontal translation of h units.
- If $h>0$, the graph moves right. If $h<0$ the graph moves

Replacements For Translations

Given the function $y=f(x)$:

- replacing y with $y-k, \quad($ ie. $y \rightarrow y-k) \quad$ describes a vertical translation. $y-k=f(x)$ or $y=f(x)+k$ describes a vertical translation.
- replacing x with $x-h, \quad$ (ie. $x \rightarrow x-h$) describes a horizontal translation. $y=f(x-h)$ describes a horizontal translation.

In general, if

$$
\begin{aligned}
& y-k=f(x-h) \\
& \text { or } \\
& y=f(x-h)+k \text { then }
\end{aligned}
$$

$k>0$ the graph moves up \uparrow
$k<0$ the graph moves down \downarrow
$h>0$ the graph moves right \rightarrow $h<0$ the graph moves left \leftarrow

a) $y=f(x-3)$
b) $y=f(x)+4$
b) replace y with $y-8$

What happens to the graph of the function $y=f(x)$ if the following changes are made to its equation?
a) replace x with $x+2 \quad h=-2$

Describe how the graphs of the following functions relate to the graph of $y=f(x)$.
c) $y-1=f(x+10)$
tmosformain: h. . 3 auth riot

The poirot (2,-3) ins on the graph of $y=f(x)$. State the coordinates of the image of this point under the following transformations.
a) $y+8=f(x) \quad y \rightarrow y+b$
b)

$($ (1, $) \rightarrow(x+7, y+5)$

a) A horizontal translation of 5 units left.

$$
y=f(x+5)
$$

$$
\text { b) A translation of } 3 \text { units up. } K=3
$$

c) A translation of m units right and p units down.

$$
y+=f(x-m)
$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

$$
y=f(x-m)-p
$$

(x, y) $\left(\begin{array}{c}+2, y)\end{array}\right.$

Replacment Notation and Mapping Notation

Do not confuse mapping notation with the notation we have used for replacements.
Consider the example where the graph of $y=f(x)$ is transformed to the graph of $y-2=f(x-3)$.

In this example, the replacements for x and y may be written as $x \rightarrow x-3$ and $y \rightarrow y-2$.
Under this transformation, all points on the graph of $y=f(x)$ will move 3 units to the right and 2 units up. The point with coordinates $(4,6)$ will be translated to the point $(7,8)$. In general the point with coordinates (x, y) is translated to the point $(x+3, y+2)$.

The mapping notation for this translation may be written as $(x, y) \rightarrow(x+3, y+2)$, implying that the point with coordinates (x, y) is translated to the point $(x+3, y+2)$.

Notice that the mapping notation $(x, y) \rightarrow(x+3, y+2)$, is NOT the same as the replacement notation $x \rightarrow x+3$ and $y \rightarrow y+2$.

The mapping notation $(x, y) \rightarrow(x+3, y+2)$ is equivalent to the replacement notation $x \rightarrow x-3$ and $y \rightarrow y-2$.

a) State the coordinates of the image of the point $(-3,5)$ under the translation described by $(x, y) \rightarrow(x-7, y+4)$.
b) Write the equation of the image of $y=f(x)$ after the translation $(x, y) \rightarrow(x-6, y+1)$.

Complete Assignment Questions \#1 - \#10

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Assignment \#| ($a, c, e \ldots$), 2-10

1. Describe how the graphs of the following functions relate to the graph of $y=f(x)$.
a) $y=f(x+9)$
b) $y=f(x)+7$
c) $y=f(x-4)+4$
d) $y-6=f(x)$
e) $y=3+f(x-5)$
f) $y+2=f(x+3)-10$
2. Write the equation of the image of $y=f(x)$ after each transformation.
a) a vertical translation of 10 units down
b) a horizontal translation of 8 units right and a vertical translation of 9 units up
c) a translation of t units up and s units left
3. The function $y=f(x)$ is transformed to $y=f(x-h)+k$. Find the values of h and k for the following translations.
a) 7 units right
b) 4 units up and 2 units left
c) a units right and b units down.
4. The point $(-3,5)$ lies on the graph of $y=f(x)$. State the coordinates of the image of this point under the following transformations.
a) $y=f(x)+3$
b) $y+5=f(x+2)$
c) $(x, y) \rightarrow(x-7, y-1)$
5. What happens to the graph of the function $y=f(x)$ if you make these changes to its equation?
a) replace x with $x-8$
b) replace y with $y+2$
c) replace x with $x+4$, and y with $y-7$
