Transformations Lesson \#3: Reflections - Part One

Invariant Points

Invariant points are points on a graph which do not move after a transformation.

Comparing the Graphs of $y=f(x)$ and $y=-f(x)$

Part 1

a) The graph of $y=f(x)=x^{2}-10 x+25$ is shown. Write an equation which represents $y=-f(x)$.
$-y=x^{2}-10 x+25$ $y=-x^{2}+10 x-25$
Use agraphing calculator to sketch $y=-f(x)$ and show the graph on the grid.
c) State the coordinates of the invariant points).

$$
(5,0)
$$

Part 2

a) The graph of $y=f(x)=x^{3}-8$ is shown.

Write an equation which represents $y=-f(x)$.

$-y=x-8$
$y=-x^{3}+8$
b) Use a graphing calculate to sketch $y=-f(x)$ and show the graph on the grid.
c. State the coordinates of the invariant points).
d) How does the graph of $y=-f(x)$ compare with the graph of $y=f(x)$?

Part 3

The graph of $y=f(x)$ is shown. Sketch the graph of $y=-f(x)$.

If we replace y with $-y$, then $y=f(x)$ becomes $-y=f(x)$, which is equivalent to $y=-f(x)$.
So the replacement in this example is $y \rightarrow-y$.

Comparing the Graphs of $y=f(x)$ and $y=f(-x)$

Part 1

a) The graph of $y=f(x)=x^{2}-10 x+25$ is shown. Write an equation which represents $y=f(-x)$.

$$
(x, y) \rightarrow(-x, y)
$$

$$
\begin{aligned}
& y=(-x)^{2}-10(-x)+25 \\
& y=x^{2}+10 x+25
\end{aligned}
$$

$(5,0) \rightarrow(-5,0)$) $\begin{aligned} & \text { Use a graphing calculator to sketch } y=f(-x) \text { and } \\ & \text { show the graph }\end{aligned}$ show the graph on the grid.
c) State the coordinates of the invariant points).

$$
(0,25)^{y} \text {-int. }
$$

Part 2

a) The graph of $y=f(x)=x^{3}-8$ is shown. Write an equation which represents $y=f(-x)$.

$$
\begin{aligned}
& y=(-x)^{3}-8 \\
& y=-x^{3}-8
\end{aligned}
$$

b) Use a graphing calculator to sketch $y=f(-x)$ and show the graph on the grid.
c) State the coordinates of the invariant points).

$$
(0,-8)
$$

d) How does the graph of $y=f(-x)$ compare with the graph of $y=f(x)$?

Part 3

The graph of $y=f(x)$ is shown. Sketch the graph of $y=f(-x)$.

If we replace x with $-x$, then $y=f(x)$ becomes $y=f(-x)$. So the replacement in this example is $x \rightarrow-x$.

Comparing the Graphs of $y=f(x)$ and $y=f^{-1}(x)$ or $x=f(y)$

a) The graph of $y=f(x)=(x-5)^{2}$ is shown. solve for y.

b) Use a graphing calculator to sketch $x=f(y)$ and show the graph on the grid.
c) Although there are four points of intersection of
 the graphs, explain why there are only two invariant points. Mark the invariant points on the grid.

Part 2

a) The graph of $y=f(x)=x^{3}-8$ is shown. Write an equation which represents $y=f^{-1}(x)$.

b) Use a graphing calculator to sketch $y=f^{-1}(x)$ and show the graph on the grid.
c) Mark the invariant points) on the grid.
d) How does the graph of $x=f(y)$ compare with the
 graph of $y=f(x)$?

Part 3

The graph of $y=f(x)$ is shown. Sketch the graph of $x=f(y)$.

If we replace x with y, and y with x, then $y=f(x)$ becomes $x=f(y)$. So the replacements in this example are $x \rightarrow y$ and $y \rightarrow x$.

Reflections

A reflection is a transformation which reflects (or flips) a figure about a line.
Fill in the following blanks which summarize the previous investigations.

Given the function $y=f(x)$:

- replacing x with $-x$, (i.e. $x \rightarrow-x$) describes a reflection in the y-axis. $y=f(-x)$ describes a reflection in the y-axis.
- replacing y with $-y$, (i.e. $y \rightarrow-y$) describes a reflection in the x-axis. $-y=f(x)$ or $y=-f(x)$ describes a reflection in the x-axis.
\cdot interchanging x and y, (i.e. $x \rightarrow y, y \rightarrow x$) describes a reflection in the line $y=x$. $x=f(y)$ or $y=f^{-1}(x)$ describes a reflection in the line $y=x . \quad(x, y) \rightarrow(y, x)$
Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

The graph drawn in the thick line is a reflection of the graph drawn in the thin line. Write an equation for each graph drawn in the thick line.

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Combining Reflections

Part 1 - Transforming $y=f(x)$ to $y=-f(-x)$
The table below shows how to "build" $y=-f(-x)$ from $y=f(x)$.

Transformation	Replacement for \boldsymbol{x} or \boldsymbol{y}	Current Equation
1. reflection in the x-axis	$y \rightarrow-y$	$-y=f(x)$ $y=-f(x)$
2. reflection in the y-axis	$x \rightarrow-x$	$y=-f(-x)$

The transformations in the table are applied to shape \mathbf{A} in the order shown. The images are shown on the grid.
a) Complete the table below to determine the equation which results from changing the order in which the reflections are carried out.

Transformation	Replacement for x or y	Current Equation
1. reflection in the y-axis	$x \rightarrow-x$	$y=f(-x)$
2. reflection in the x-axis	$y \rightarrow-y$	$-y=f(-x)$

b) On the grid above, sketch the image of shape \mathbf{A} under the combinations of transformations in a).
c) Does the order in which the reflections are carried out affect the final in mage f
d) Describe two sets of transformations, in order, which can be applied to the graph of $y=f(x)$ to produce the graph of $y=-f(-x)$.
(1) refl on the x-axis
then refl. on y-axis

Part 2 - Transforming $y=f(x)$ to $x=f(-y)$ and $x=-f(y)$
In each case, complete the table and sketch the combination of transformations on the grid.

mamam		Cmantame
\%mamem	$y \rightarrow-y$	- $\begin{aligned} & -y=f(x) \\ & y=-f(k)\end{aligned}$
2meme	$y<x$	$x=-f(y)$

Transformation	Replacement for \boldsymbol{x} or \boldsymbol{y}	Current Equation
1. reflection in $y=x$	$y \leftrightarrow x$	$X=f(y)$
2. reflection in the y-axis	$X \rightarrow-x$	$-X=f$ $X=-f$

Transformation	Replacement for \boldsymbol{x} or \boldsymbol{y}	Current Equation
1. reflection in $y=x$	$y \leftrightarrow \rightarrow x$	$x=f$
2. reflection in the x-axis	$y \rightarrow-y$	$x=f$

a) Describe two sets of transformations, in order, which can be applied to the graph of $y=f(x)$ to produce the graph of $x=f(-y)$.
b) Describe two sets of transformations, in order, which can be applied to the graph of $y=f(x)$ to produce the graph of $x=-f(y)$.

Complete Assignment Questions \#7 - \#14

Copyright © by Absolute qaiue Publications. Ths book is NOT covered by the Cancopy agreement. \#1-13

