Transformations Lesson \#5: Stretches About the x - or \boldsymbol{y} - axis - Part One

Comparing the Graphs of $y=f(x)$ and $y=a f(x)$, where $a>0$

Part 1

The graph of $y=f(x)=\sqrt{4-x^{2}}$ is shown.
a) Write an equation which represents $y=3 f(x)$.

b) Use a graphing calculator to sketch $y=3 f(x)$ on the grid.
c) Describe how the number 3 in $y=3 f(x)$ affects:

- the general sketch of $y=f(x)$
vertical expansion by a factor
- the x-intercepts of the graph of $y=f(x)$

> epts of the graph of $y=f(x)$
> none $b / c y=0)$

- the y-intercept of the graph of $y=f(x)$.
multiplied by 3

Part 2

a) Write an equation which represents $y=\frac{1}{2} f(x)$.
b) Use a graphing calculator to sketch $y=\frac{1}{2} f(x)$ on the grid.
c) Describe how the number $\frac{1}{2}$ in $y=\frac{1}{2} f(x)$ affects:

- the general sketch of $y=f(x)$ vertical compressions by a factor
- the x-intercepts of the graph of $y=f(x)$

novas $(b / c y=0)$

- the y-intercept of the graph of $y=f(x)$.

d) Complete the following statement ling the results of Parts 1 and 2.

Compared to the graph of $y=f(x)$, the graph of $y=a f(x)$ results in a \qquad stretch about the \qquad -axis by a factor of \qquad .

If we replace y with $\frac{1}{a} y$, then $y=f(x)$ becomes $\frac{1}{a} y=f(x)$, which is equivalent to $y=a f(x)$. So the replacement in this example is $y \rightarrow \frac{1}{a} y$.

Comparing the Graphs of $y=f(x)$ and $y=f(b x)$, where $b>0$

Part 1

The graph of $y=f(x)=\sqrt{4-x^{2}}$ is shown.
a) Write an equation which represents $y=f(4 x)$.

$$
y=\sqrt{4-(4 x)^{2}}
$$

$$
y=\sqrt{4-16 x^{2}}
$$

b) Use a graphing calculator to sketch $y=f(4 x)$ on the grid.
c) Describe how the number 4 in $y=f(4 x)$ affects:

- the general sketch of $y=f(x)$
- the x-intercepts of the graph of $y=f(y)$
- the y-intercept of the graph $q[y=f(x)$.

$$
\text { none }(b / c \quad X=0)
$$

Part 2

a) Write an equation which represents $y=f\left(\frac{1}{3} x\right)$.

$$
y=\sqrt{4-\left(\frac{1}{3} x\right)^{2}}
$$

b) Use a graphing calculator to sketch $y=f\left(\frac{1}{3} x\right)$ on the grid.
c) Describe how the number $\frac{1}{3}$ in $y=f\left(\frac{1}{3} x\right)$ affects: hor. exp. by a factorof 3

Part

- the general sketch of $y=f(x)$
- the x-intercepts of the graph of $y=f(x)$

- the y-intercept of the graph of $y=f(x)$.
none $\left(\frac{b}{6}(x)\right.$. $x=0$
d) Complete the following statement using the results of Parts 1 and 2.

Compared to the graph of $y=f(x)$, the graph of $y=f(b x)$ results in a \qquad stretch about the \qquad -axis by a factor of $\frac{1}{b}$.

If we replace x with bx , then $y=f(x)$ becomes $y=f(b x)$.
So the replacement in this example is $x \rightarrow b x$.

Stretches

In mathematics we use the word stretch to represent both an expansion or a compression. In this course we only consider stretches about the x - and y-axis.
In the table below, the graph of $y=f(x)$ and the graph of $y=a f(x)$ or $y=f(b x)$ is given. Fill in the blanks.

a or b	Horizontal or Vertical Stretch	Graph
$0<a<1$ vert. compression	The graph of $y=f(x)$ will be stretched \qquad by a factor of about the X-axis.	
$\begin{aligned} & \quad a>1 \\ & \text { vert. } \\ & \text { expension } \end{aligned}$	The graph of $y=f(x)$ will be stretched \qquad by a factor of \qquad about the \boldsymbol{X}-axis.	
$a<0$	The graph of $y=f(x)$ will be reflected in the \qquad x-axis and stretched vertically about the \boldsymbol{X}-axis.	
$0<b<1$ hor. erpension	The graph of $y=f(x)$ will be stretched \qquad horiz by a factor of about the y-axis.	
$b>1$ hor. Comperession	The graph of $y=f(x)$ will be stretched $\frac{\text { hovitantally-b }}{\text { of }-b \text { about }}$ the M-axis.	
$b<0$	The graph of $y=f(x)$ will be reflected in the and stretched horizontally about the -axis.	

$y=a f(x)$ can be written as $\frac{1}{a} y=f(x)$.

Given the function $y=f(x)$:

- replacing x with $b x, \quad(i . e . x \rightarrow b x) \quad$ describes a horizontal stretch about the y-axis. i.e. $y=f(b x)$ describes a horizontal stretch.
- replacing y with $\frac{1}{a} y$, (ie. $y \rightarrow \frac{1}{a} y$) describes a vertical stretch about the x-axis. i.e. $\frac{1}{a} y=f(x)$ or $y=a f(x)$ describes a vertical stretch.

In general, if $\frac{1}{a} y=f(b x) \quad$ or $\quad y=a f(b x)$, then for
$a>0$ - vertical stretch about the x-axis by a factor of a
$a<0$ - vertical stretch about the x-axis by a factor of $|a|$
\quad and a reflection in the x-axis
$b>0$ - horizontal stretch about the y-axis by a factor of $\frac{1}{b}$
$b<0$ - horizontal stretch about the y-axis a by a factor of $\frac{1}{|b|}$
\quad and a reflection in the y-axis.

Class Ex. \#1

Write the replacement for x or y and write the equation of the image of $y=f(x)$ after each transformation.
a) a horizontal stretch by a factor of 6 about the y-axis $x \rightarrow \frac{1}{6} x$

$$
y=f\left(\frac{1}{6} x\right)
$$

b) a vertical stretch by a factor of $\frac{1}{5}$ about the x-axis

$$
5 y=f(x)
$$

$$
\begin{aligned}
& y=\frac{1}{2} f(x) \\
& \text { in }
\end{aligned}
$$

c) a reflection in the x-axis and a vertical stretch about the x-axis by a factor of 3

$\begin{aligned} &-\frac{1}{3 y} y=f(x) \\ & y=-3 f(x) \\ & \text { d) a horizontal stretch about the } y \text {-axis by a factor of } \frac{1}{2} \text { and }\end{aligned}$ a vertical stretch about the x-axis by a factor of $\frac{1}{4}$

$$
4 y=f(2 x)
$$

$$
\begin{aligned}
& x \rightarrow 2 x \\
& y \rightarrow 4 y
\end{aligned}
$$

$y=\frac{1}{+} f(2 x)$

How does the graph of $3 y=f(x)$ compare with the graph of $y=f(x)$?
$y \rightarrow 3 y$
vert. comp by a fiction of $\frac{1}{3}$
\qquad

What happens to the graph of the function $y=f(x)$ if you make these changes?
a) Replace x with $4 x$.

$$
\text { hor. comp. by a the bo of } \frac{1}{4}
$$

b) Replace y with $\frac{1}{3} y$.

$$
\text { vet. exp. by a factor of } 3
$$

c) Replace y with $6 y$ and x with $\frac{1}{3} x$.
vest comp. by a factor of $\frac{1}{6}$ nor. exp. by a factor of 3

The graph of $y=f(x)$ is shown.
Sketch $y=f(-2 x)$.

$$
x \rightarrow-2 x
$$

reflection on the y-axis hor comp. by a fitter of $\frac{1}{2}$

$$
(x, y) \rightarrow\left(-\frac{1}{x}, y\right)
$$

$$
\# 1-6
$$

Complete Assignment Questions \#1-\#7

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

