

Stretches

In mathematics we use the word **stretch** to represent both an expansion or a compression. In this course we only consider stretches about the *x*- and *y*-axis.

In the table below, the graph of y = f(x) and the graph of y = af(x) or y = f(bx) is given. Fill in the blanks.

Fill in the blan $a \text{ or } b$	Horizontal or Vertical Stretch	Graph
0 <a<1 vert. Compression</a<1 	The graph of $y = f(x)$ will be stretched by a factor of about theaxis.	y $y = f(x)$ $y = af(x)$
a>1 vot. Expension	The graph of $y = f(x)$ will be stretched $$ by a factor of $$ about the $\underbrace{\times}$ -axis.	y = f(x) $y = af(x)$
<i>a</i> < 0	The graph of $y = f(x)$ will be reflected in the $x - 6x^{3}$ and stretched vertically about the x -axis.	y y y f(x) y f(x) g(f(x))
0 <b<1 har. Expension</b<1 	The graph of $y = f(x)$ will be stretched	y $$
b>1 hor. (ompression	The graph of $y = f(x)$ will be stretched	y = f(x) $y = af(bx)$
<i>b</i> < 0	The graph of $y = f(x)$ will be reflected in theand stretched horizontally about theaxis.	y = f(x) $y = f(x)$ $y = af(x)$

Copyright © by Absolute Value Publications. This book is **NOT** covered by the Cancopy agreement.

$$y = af(x)$$
 can be written as $\frac{1}{a}y = f(x)$.

Given the function y = f(x):

- replacing x with bx, $(i.e. x \rightarrow bx)$ describes a horizontal stretch about the y-axis. i.e. y = f(bx) describes a horizontal stretch.
- replacing y with $\frac{1}{a}y$, (*i.e.* $y \rightarrow \frac{1}{a}y$) describes a vertical stretch about the x-axis. i.e. $\frac{1}{a}y = f(x)$ or y = af(x) describes a vertical stretch.

In general, if $\frac{1}{a}y = f(bx)$ or y = af(bx), then for a > 0 - vertical stretch about the *x*-axis by a factor of *a* a < 0 - vertical stretch about the *x*-axis by a factor of |a|and a reflection in the x-axis b > 0 - horizontal stretch about the y-axis by a factor of $\frac{1}{b}$ b < 0 - horizontal stretch about the *y*-axis a by a factor of and a reflection in the y-axis.

Write the replacement for x or y and write the equation of the image of y = f(x)after each transformation.

- a) a horizontal stretch by a factor of 6 about the y-axis $x \rightarrow bx$ $y = f(t_x)$

b) a vertical stretch by a factor of ¹/₅ about the x-axis
57 = f(x)
6) a reflection in the x-axis and a vertical stretch about the x-axis by a factor of 3

How does the graph of 3y = f(x) compare with the graph of y = f(x)?

y -> 3y vert. comp by a factor of 13

What happens to the graph of the function y = f(x) if you make these changes?

a) Replace x with 4x. her. comp. by a tector of 4

b) Replace y with $\frac{1}{3}y$. vert. exp. by a factor of 3

c) Replace y with 6y and x with $\frac{1}{3}x$. vert. Comp. by a factor of $\frac{1}{5}$ hor. Exp. by a factor of $\frac{3}{5}$

