Transformations Lesson \#8:
 Combining Transformations - Part Two

Equations Combining Two or More Transformations

To apply a combination of transformations, consider the following:

$$
y=a f[b(x-h)]+k \quad \text { where }
$$

$$
\text { ie. } f(2 x+4)
$$

$|a|$ is the vertical stretch factor. If a is negative, there is also a refection $x+2{ }^{2}$ the $\left.x-2\right)^{2}$
$\frac{1}{|b|}$ is the horizontal stretch factor. If b is negative, there is also a reflection in the y-axis.
h is the horizontal translation where

- if $h>0$, the translation is to the right
- if $h<0$, the translation is to the left.
k is the vertical translation where
- if $k>0$, the translation is k units up
- if $k<0$, the translation is k units down.

When graphing a combination of transformations from an equation, use the following order:
Step 1: Sketch the original function.
Step 2: Sketch any stretches.
Step 3: Sketch any reflections.
Step 4: Sketch any translations.

The graph of $y=f(x)$ is shown.
Consider the function defined by the equation $y=2 f\left(\frac{1}{2}(x+5)\right)-8$.
a) If the equation is written in the form $y=a f[b(x-h)]+k$, state the values of $a, \overrightarrow{b, h}$, and k.
$a=2 \quad b=\frac{1}{2} \quad h=-5 \quad k=-8$
b) Write the transformations associated with the parameters a, b, h, and k.

$(x, y) \rightarrow(2 x-5,2 y-8)$
moping
c) Put these transformations in an order which can be used to sketch the graph of the function. Sketch the graph of the function.

The function $f(x)=\sqrt{x}$ has been transformed into the function $g(x)=-2 \sqrt{3 x-12}+5$. Complete the following statement.
" The function $f(x)$ has been transformed to the function $g(x)$ by stretching horizontally about the y-axis by a factor of \qquad , stretching vertically about the x-axis by a factor of \qquad , reflecting in the \qquad , translating \qquad units up and \qquad units horizontally to the \qquad ."

Complete Assignment Questions \#1- \#11

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

